Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,604 result(s) for "species distribution modeling"
Sort by:
Global maps of lake surface water temperatures reveal pitfalls of air‐for‐water substitutions in ecological prediction
In modeling species distributions and population dynamics, spatially‐interpolated climatic data are often used as proxies for real, on‐the‐ground measurements. For shallow freshwater systems, this practice may be problematic as interpolations used for surface waters are generated from terrestrial sensor networks measuring air temperatures. Using these may therefore bias statistical estimates of species' environmental tolerances or population projections – particularly among pleustonic and epilimnetic organisms. Using a global database of millions of daily satellite‐derived lake surface water temperatures (LSWT), I trained machine learning models to correct for the correspondence between air and LSWT as a function of atmospheric and topographic predictors, resulting in the creation of monthly high‐resolution global maps of air‐LSWT offsets, corresponding uncertainty measures and derived LSWT‐based bioclimatic layers for use by the scientific community. I then compared the performance of these LSWT layers and air temperature‐based layers in population dynamic and ecological niche models (ENM). While generally high, the correspondence between air temperature and LSWT was quite variable and often nonlinear depending on the spatial context. These LSWT predictions were better able to capture the modeled population dynamics and geographic distributions of two common aquatic plant species. Further, ENM models trained with LSWT predictors more accurately captured lab‐measured thermal response curves. I conclude that these predicted LSWT temperatures perform better than raw air temperatures when used for population projections and environmental niche modeling, and should be used by practitioners to derive more biologically‐meaningful results. These global LSWT predictions and corresponding error estimates and bioclimatic layers have been made freely available to all researchers in a permanent archive.
Urban expansion and infrastructure development reduce habitat suitability for Asian elephants in southwestern China
Conservation interventions for threatened species must be based on accurate assessments of the effects of anthropogenic pressures on habitat suitability. We used multiscale multivariable species-distribution modeling to evaluate habitat suitability for an Asian elephant (Elephas maximus) population in Shangyong Reserve, Yunnan Province, southwestern China. We investigated the scales at which measurements of environmental variables best reflected elephant habitat selection, and examined whether these responses changed over 2 decades (2000–2010 and 2011–2020) in response to 20 environmental variables, including 14 variables reflecting landscape fragmentation, the extent of buildings, and transport infrastructure. Elephant presence was sensitive to the scale of each variable, and the effects differed among variables within and between decades. More than half of the variables influenced elephant presence at coarse scales of 8 or 16 km, including 12 variables reflecting anthropogenic pressures in 2000–2010 and 10 in 2011–2020. Overall, multivariate models with variables at their optimal scales had higher discrimination than models at uniformly fine scales of 1 km or 2 km. The extent of suitable habitat for elephants declined by 24% over 2 decades. Less than half of elephant habitat was located within Shangyong Reserve (49% in 2000–2010, 40% in 2011–2020), indicating the importance of managing suitable habitat beyond reserve boundaries. Roads and buildings reduced the probability of elephant presence, with effects that extended beyond their immediate footprint. We advocate that infrastructure be planned with buffers, ≥8 km wide, between roads or buildings and core elephant habitat. Multiscale multivariable species-distribution modeling should be employed to ensure that all suitable habitat for the remaining fragmented elephant populations in Yunnan is identified, mapped, and protected.
The importance of incorporating functional habitats into conservation planning for highly mobile species in dynamic systems
The distribution of mobile species in dynamic systems can vary greatly over time and space. Estimating theirpopulation size and geographic range can be problematic and affect the accuracy of conservation assessments. Scarce data on mobile species and the resources they need can also limit the type of analytical approaches available to derive such estimates. We quantified change in availability and use of key ecological resources required for breeding for a critically endangered nomadic habitat specialist, the Swift Parrot (Xathamus discolor). We compared estimates of occupied habitat derived from dynamic presence-background (i.e., presence-only data) climatic models with estimates derived from dynamic occupancy models that included a direct measure of food availability. We then compared estimates that incorporate fine-resolution spatial data on the availability of key ecological resources (i.e., functional habitats) with more common approaches that focus on broader climatic suitability or vegetation cover (due to the absence of fine-resolution data). The occupancy models produced significantly (P < 0.001) smaller (up to an order of magnitude) and more spatially discrete estimates of the total occupied area than climate-based models. The spatial location and extent of the total area occupied with the occupancy models was highly variable between years (131 and 1498 km²). Estimates accounting for the area of functional habitats were significantly smaller (2-58% [SD 16]) than estimates based only on the total area occupied. An increase or decrease in the area of one functional habitat (foraging or nesting) did not necessarily correspond to an increase or decrease in the other. Thus, an increase in the extent of occupied area may not equate to improved habitat quality or function. We argue these patterns are typical for mobile resource specialists but often go unnoticed because of limited data over relevant spatial and temporal scales and lack of spatial data on the availability of key resources. Understanding changes in the relative availability of functional habitats is crucial to informing conservation planning and accurately assessing extinction risk for mobile resource specialists. La distribución de las especies móviles en los sistemas dinámicos puede variar enormemente con el tiempo y el espacio. Estimar el tamaño de la población y la extensión geográfica puede ser problemático y afecta la certeza de las valoraciones de conservación. Los datos escasos sobre las especies móviles y los recursos que necesitan también pueden limitar el tipo de estrategias analíticas disponibles para derivar dichos estimados. Cuantificamos el cambio en la disponibilidad y el uso de los recursos ecológicos clave requeridos para la reproducción en un especialista nómada y en peligro de extinción crítico: el periquito migrador (lathamus discolor). Comparamos los estimados del habitat ocupado derivados de los modelos climáticos dinámicos de presencia-segundo plano (es decir, datos de sólo-presencia) con los estimados derivados de los modelos de ocupación dinámica que incluyeron una medida directa de la disponibilidad de alimento. Después comparamos los estimados que incorporan datos espaciales de alta resolución sobre la disponibilidad de recursos ecológicos clave (es decir; los habitats funcionales) con estrategias más comunes que se enfocan en una idoneidad climática más general o en la cobertura vegetal (debido a la ausencia de datos de alta resolución). Los modelos de ocupación produjeron estimados más pequeños significativamente (p<0.001) y más discretos espacialmente del área total ocupada que los modelos con base climática. La ubicación espacial y la extensión del área ocupada total fueron altamente variables entre años (131-1498 km²) con los modelos de ocupación. Los estimados que representan el área de los habitats funcionales fueron más pequeños significativamente (2-58% [DS 16]) que los estimados basados solamente en el área total ocupada. Un incremento o disminución en el área de un habitat funcional (búsqueda de alimento o anidación) no correspondió necesariamente con un incremento o disminución en el otro. Así, un incremento en la extensión del área ocupada puede no ser igual a un incremento en la función o calidad del habitat. Argumentamos que estos patrones son típicos para los especialistas en recursos móviles pero son ignorados comúnmente debido a los datos limitados sobre las escalas espaciales y temporales relevantes y a la falta de datos espaciales sobre la disponibilidad de recursos clave. Entender los cambios en la disponibilidad relativa de los habitats funcionales es crucial para informar a la planeadón de la conservación y valorar con certeza el riesgo de extinción de los especialistas en recursos móviles.
Spatiotemporal Distribution Patterns and Conservation Priorities of Gymnosperms With Different Leaf Shapes in China Under Climate Change
ABSTRACT Leaf morphology is one of the important indicators for studying the response of plants to climate change. Gymnosperms play a crucial role in maintaining biodiversity and ecosystem stability in China. However, the geographical and altitudinal distribution patterns of gymnosperms with different leaf morphologies in China in response to climate change are not yet fully understood. This study utilized occurrence data for 71 rare gymnosperm species (including varieties) and 15 environmental variables to model the contemporary geographical distribution for the 2070s and the 2090s under two shared socioeconomic pathway scenarios (SSP2‐4.5 and SSP5‐8.5). Gymnosperm species were classified into five groups based on their leaf shapes (needle‐shaped, scale‐shaped, lanceolate‐shaped, fan‐shaped, and strip‐shaped), and the analysis revealed that the primary climatic variable driving ecological niche differences among these groups was Bio15 (precipitation seasonality). Lanceolate‐leaved gymnosperms exhibited an expansionary trend, whereas other groups generally showed range reductions under future climatic scenarios. The results indicated that approximately half of the gymnosperm species will experience notable range contractions and gradual migration to higher altitudes in northwestern regions from the present to the 2090s. Hotspots for species richness were identified in the eastern Yunnan‐Guizhou Plateau, the Nanling Mountains, and the eastern Zhejiang‐Fujian Hills. However, these hotspots showed limited overlap with existing nature reserves in China. The threat status of some species will be severely upgraded from vulnerable to critically endangered, such as Abies recurvata, highlighting the urgent need for enhanced conservation efforts. This study enhances understanding of the future distribution patterns of China's gymnosperms and provides valuable insights for developing targeted protection and conservation strategies. This study modeled the spatiotemporal distribution patterns of 71 rare gymnosperm species (including varieties) with five different leaf morphologies in China in response to climate change and found that approximately half of the species will experience significant range contractions and migrate to higher altitudes toward the northwest. Lanceolate‐leaved gymnosperms show range expansions compared to other groups. The overlap between the regions of high species richness and existing national nature reserves remains limited, posing the need for targeted conservation strategies.
Predicting the distribution of foraging seabirds during a period of heightened environmental variability
Quantifying the links between the marine environment, prey occurrence, and predator distribution is the first step towards identifying areas of biological importance for marine spatial planning. Events such as marine heatwaves result in an anomalous change in the physical environment, which can lead to shifts in the structure, biomass, and distribution of lower trophic levels. As central-place foragers, seabirds are vulnerable to changes in their foraging grounds during the breeding season. We first quantified spatiotemporal variability in the occurrence and biomass of prey in response to an abrupt change in oceanography as a result of a marine heatwave event. Secondly, using multivariate techniques and machine learning, we investigated if differences in the foraging technique and prey of seabirds resulted in varying responses to changes in prey occurrence and the environment over a 2.5-yr period. We found that the main variables correlated with seabird distribution were also important in structuring the occurrence and biomass of prey; sea-surface temperature (SST), current speed, mixed-layer depth, and bathymetry. Both zooplankton biomass and the occurrence of fish schools exhibited negative relationships with temperature, and temperature was subsequently an important variable in determining seabird distribution. We were able to establish correlations between the distribution of prey and the spatiotemporal distribution of albatross, little penguins and common-diving petrels. We were unable to find a correlation between the distribution of prey and that of short-tailed shearwaters and fairy prions. For high-use coastal areas, the delineation of important foraging regions is essential to balance human use of an area with the needs of marine predators, particularly seabirds.
Crop wild relatives of the brinjal eggplant (Solanum melongena): Poorly represented in genebanks and many species at risk of extinction
PREMISE OF THE STUDY: Crop wild relatives (CWR) provide important traits for plant breeding, including pest, pathogen, and abiotic stress resistance. Therefore, their conservation and future availability are essential for food security. Despite this need, the world's genebanks are currently thought to conserve only a small fraction of the total diversity of CWR. METHODS: We define the eggplant genepool using the results of recent taxonomic and phylogenetic studies. We identify the gaps in germplasm accessions for menting species distribution models (SDM). Preliminary conservation assessments using IUCN criteria were done for all species and were combined with the gap analysis to pinpoint where under-collected and threatened CWR species coincide with high human disturbance and occur outside of protected areas. KEY RESULTS: We show that many eggplant CWR are poorly represented in genebanks compared to their native ranges. Priority areas for future collecting are concentrated in Africa, especially along the Kenya-Tanzania border. Fourteen species of eggplant CWR are assessed as threatened or near-threatened; these are also concentrated in eastern Africa. CONCLUSIONS: The knowledge base upon which conservation of wild relative germplasm depends must take into account both taxonomie and phylogenetic advances. Beyond traditional research focus on close relatives of crops, we emphasize the benefits of defining a broad CWR genepool, and the importance of assessing threats to wild species when targeting localities for future collection of CWR to improve crop breeding in the face of environmental change.
Spatiotemporal Distribution of Human–Elephant Conflict in Eastern Thailand: A Model-Based Assessment Using News Reports and Remotely Sensed Data
In Thailand, crop depredation by wild elephants intensified, impacting the quality of life of local communities and long-term conservation of wild elephant populations. Yet, fewer studies explore the landscape-scale spatiotemporal distribution of human–elephant conflict (HEC). In this study, we modeled the potential HEC distribution in ten provinces adjacent to protected areas in Eastern Thailand from 2009 to 2018. We applied the time-calibrated maximum entropy method and modeled the relative probability of HEC in varying scenarios of resource suitability and direct human pressure in wet and dry seasons. The environmental dynamic over the 10-year period was represented by remotely sensed vegetation, meteorological drought, topographical, and human-pressure data. Results were categorized in HEC zones using the proposed two-dimensional conflict matrix. Logistic regression was applied to determine the relevant contribution of each scenario. The results showed that although HEC probability varied across seasons, overall HEC-prone areas expanded in all provinces from 2009 to 2018. The largest HEC areas were estimated during dry seasons with Chantaburi, Chonburi, Nakhon Ratchasima, and Rayong provinces being the HEC hotspots.However, the HEC potential was reduced during severe and prolonged droughts caused by El Nino events. Direct human pressure caused a more gradual increase of HEC probability around protected areas. On the other hand, resource suitability showed large variation across seasons. We recommend zone-dependent management actions towards a fine-balance between human development and the conservation of wild elephants.
The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant
The location and timing of domestication of the olive tree, a key crop in Early Mediterranean societies, remain hotly debated. Here, we unravel the history of wild olives (oleasters), and then infer the primary origins of the domesticated olive. Phylogeography and Bayesian molecular dating analyses based on plastid genome profiling of 1263 oleasters and 534 cultivated genotypes reveal three main lineages of pre-Quaternary origin. Regional hotspots of plastid diversity, species distribution modelling and macrofossils support the existence of three long-term refugia; namely the Near East (including Cyprus), the Aegean area and the Strait of Gibraltar. These ancestral wild gene pools have provided the essential foundations for cultivated olive breeding. Comparison of the geographical pattern of plastid diversity between wild and cultivated olives indicates the cradle of first domestication in the northern Levant followed by dispersals across the Mediterranean basin in parallel with the expansion of civilizations and human exchanges in this part of the world.
Ecotourism Disturbance on an Endemic Endangered Primate in the Huangshan Man and the Biosphere Reserve of China: A Way to Move Forward
The primary purpose of the Man and the Biosphere Program is the sustainable development of both the economy and nature conservation activities. Although the effectiveness of eco-tourism to reach this goal has been proposed, due to the lack of long-term monitoring data and a model species, there has been no obvious mechanism to evaluate the effectiveness of this policy. This study explored the effectiveness of the sustainable development policy of HMBR based on 30 years data of monitoring the Tibetan macaque, local human population, visitors, and annual ecotourism income in Huangshan by estimating species habitat suitability and the impact of ecotourism. The results showed increases in the income for the local human population, the number of visitors, and annual eco-tourism. Simultaneously, the reserve’s Tibetan macaque population size and suitable habitat areas increased. The macaques expanded their habitat to the low-altitude buffer zone (400–800 m), an area with lower eco-tourism disturbance. Scenic spots had a significant negative impact on habitat suitability (the substantially increased contributions of scenic spots from 0.71% to 32.88%). Our results and methods provide a suitable evaluation framework for monitoring the sustainable development and effectiveness of eco-tourism and wildlife conservation in Man and the Biosphere reserves.