Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"sputtered AlN"
Sort by:
Raman Analysis of E2 (High) and A1 (LO) Phonon to the Stress-Free GaN Grown on Sputtered AlN/Graphene Buffer Layer
by
Zeng, Yu
,
Ning, Jing
,
Wang, Dong
in
A1 (LO) phonon
,
Chemical vapor deposition
,
E2 (high) phonon
2020
The realization of high-speed and high-power gallium nitride (GaN)-based devices using high-quality GaN/Aluminum nitride (AlN) materials has become a hot topic. Raman spectroscopy has proven to be very useful in analyzing the characteristics of wide band gap materials, which reveals the information interaction of sample and phonon dynamics. Four GaN samples grown on different types of buffer layers were fabricated and the influence of graphene and sputtered AlN on GaN epitaxial layers were analyzed through the E2 (high) and A1 (LO) phonon. The relationship between the frequency shift of E2 (high) phonons and the biaxial stress indicated that the GaN grown on the graphene/sputtered AlN buffer layer was stress-free. Furthermore, the phonon lifetimes of A1 (LO) mode in GaN grown on graphene/sputtered AlN buffer layer suggested that carrier migration of GaN received minimal interference. Finally, the Raman spectra of graphene with the sputtered AlN interlayer has more disorder and the monolayer graphene was also more conducive to nucleation of GaN films. These results will have significant impact on the heteroepitaxy of high-quality thin GaN films embedded with a graphene/sputtered AlN buffer, and will facilitate the preparation of high-speed GaN-based optoelectronic devices.
Journal Article
Growth of Ga0.70In0.30N/GaN Quantum-Wells on a ScAlMgO4 (0001) Substrate with an Ex-Situ Sputtered-AlN Buffer Layer
2024
This study attempted to improve the internal quantum efficiency (IQE) of 580 nm emitting Ga0.70In0.30N/GaN quantum-wells (QWs) through the replacement of a conventional c-sapphire substrate and an in-situ low-temperature GaN (LT-GaN) buffer layer with the ScAlMgO4 (0001) (SCAM) substrate and an ex-situ sputtered-AlN (sp-AlN) buffer layer, simultaneously. To this end, we initially tried to optimize the thickness of the sp-AlN buffer layer by investigating the properties/qualities of an undoped-GaN (u-GaN) template layer grown on the SCAM substrate with the sp-AlN buffer layer in terms of surface morphology, crystallographic orientation, and dislocation type/density. The experimental results showed that the crystallinity of the u-GaN layer grown on the SCAM substrate with the 30 nm thick sp-AlN buffer layer [GaN/sp-AlN(30 nm)/SCAM] was superior to that of the conventional u-GaN template layer grown on the c-sapphire substrate with an LT-GaN buffer layer (GaN/LT-GaN/FSS). Notably, the experimental results showed that the structural properties and crystallinity of GaN/sp-AlN(30 nm)/SCAM were considerably different from those of GaN/LT-GaN/FSS. Specifically, the edge-type dislocation density was approximately two orders of magnitude higher than the screw-/mixed-type dislocation density, i.e., the generation of screw-/mixed-type dislocation was suppressed through the replacement, unlike that of the GaN/LT-GaN/FSS. Next, to investigate the effect of replacement on the subsequent QW active layers, 580 nm emitting Ga0.70In0.30N/GaN QWs were grown on the u-GaN template layers. The IQEs of the samples were measured by means of temperature-dependent photoluminescence efficiency, and the results showed that the replacement improved the IQE at 300 K by approximately 1.8 times. We believe that the samples fabricated and described in the present study can provide a greater insight into future research directions for III-nitride light-emitting devices operating in yellow–red spectral regions.
Journal Article
Epitaxial Growth of GaN on Magnetron Sputtered AlN/Hexagonal BN/Sapphire Substrates
by
Zhang, Yachao
,
Wang, Yanli
,
Wu, Jinxing
in
Chemical bonds
,
Chemical vapor deposition
,
Dislocation density
2020
Magnetron sputtering is adopted to deposit ~25 nm thick AlN on the surface of hexagonal BN(h-BN)/sapphire substrates, followed by epitaxial GaN growth on top of the AlN/h-BN/sapphire substrate using a metal–organic chemical vapor deposition system. Compared to GaN grown on the h-BN/sapphire surface directly, this method results in a continuous and smooth GaN film with a smaller root mean square roughness. Besides, the introduction of the sputtered AlN layer reduces the dislocation density of GaN by 35.7%. We provide a pathway of GaN epitaxy on the h-BN surface, which significantly improves its surface morphology and crystal quality.
Journal Article