Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
372
result(s) for
"teleomorphs"
Sort by:
The sections of Alternaria: formalizing species-group concepts
by
Pryor, Barry M.
,
Lawrence, Daniel P.
,
Gannibal, Philipp B.
in
Alternaria
,
Alternaria - classification
,
Alternaria - genetics
2013
The systematics of Alternaria and allied genera traditionally has been based on the characteristics of conidia and the sporulation apparatus. This emphasis on morphology in the reconstruction of organismal relationships has resulted in taxonomic uncertainty and flux for a number of taxa in Alternaria and the related genera Stemphylium, Embellisia, Nimbya and Ulocladium. The present study used a molecular phylogenetic approach for systematic resolution and incorporated extensive taxon sampling (n = 176 species) representing 10 genera and analyses of 10 protein-coding loci. Phylogenetic analyses based on five of these genes revealed eight distinct asexual lineages of Alternaria that cluster as the sister group to the asexual paraphyletic genus Ulocladium, while taxa with known teleomorphs currently circumscribed as Alternaria (the infectoria species-group) cluster among genera that also have representatives with known teleomorphs. This work proposes to elevate the eight well supported asexual lineages of Alternaria to the taxonomic rank of section. Evolutionary relationships among Alternaria and closely related genera are discussed.
Journal Article
Nomenclatural realignment of Neotyphodium species with genus Epichloë
2014
Nomenclatural rule changes in the International Code of Nomenclature for algae, fungi and plants, adopted at the 18th International Botanical Congress in Melbourne, Australia, in 2011, provide for a single name to be used for each fungal species. The anamorphs of Epichloë species have been classified in genus Neotyphodium, the form genus that also includes most asexual Epichloë descendants. A nomenclatural realignment of this monophyletic group into one genus would enhance a broader understanding of the relationships and common features of these grass endophytes. Based on the principle of priority of publication we propose to classify all members of this clade in the genus Epichloë. We have reexamined classification of several described Epichloë and Neotyphodium species and varieties and propose new combinations and states. In this treatment we have accepted 43 unique taxa in Epichloë, including distinct species, subspecies, and varieties. We exclude from Epichloë the two taxa Neotyphodium starrii, as nomen dubium, and Neotyphodium chilense, as an unrelated taxon.
Journal Article
Phylogenetic relationships of rock-inhabiting black fungi belonging to the widespread genera Lichenothelia and Saxomyces
2019
Rock-inhabiting fungi (RIF) are adapted to thrive in oligotrophic environments and to survive under conditions of abiotic stress. Under these circumstances, they form biocoenoses with other tolerant organisms, such as lichens, or with less specific phototrophic consortia of aerial algae or cyanobacteria. RIF are phylogenetically diverse, and their plastic morphological characters hamper the straightforward species delimitation of many taxa. Here, we present a phylogenetic study of two RIF genera, Lichenothelia and Saxomyces. Representatives of both genera inhabit rather similar niches on rocks, but their phylogenetic relationships are unknown so far. The cosmopolitan genus Lichenothelia is recognized by characters of fertile ascomata and includes species with different life strategies. In contrast, Saxomyces species were described exclusively by mycelial characters found in cultured isolates from rock samples collected at high alpine elevations. Here, we use an extended taxon sampling of Dothideomycetes to study the phylogenetic relationships of both Lichenothelia and Saxomyces. We consider environmental samples, type species, and cultured isolates of both genera and demonstrate their paraphyly, as well as the occurrence of teleomorphs in Saxomyces. We applied three species delimitation methods to improve species recognition based on molecular data. We show the distinctiveness of the two main lineages of Lichenothelia (Lichenotheliales s. str.) and Saxomyces and discuss differences in species delimitation depending on molecular markers or methods. We revise the taxonomy of the two genera and describe three new taxa, Lichenothelia papilliformis, L. muriformis, and Saxomyces americanus, and the teleomorph of S. penninicus.
Journal Article
New teleomorph combinations in the entomopathogenic genus Metacordyceps
2012
The genus Metacordyceps contains arthropod pathogens in Clavicipitaceae (Hypocreales) that formerly were classified in Cordyceps sensu Kobayasi et Mains. Of the current arthropod pathogenic genera of Hypocreales, the genus Metacordyceps remains one of the most poorly understood and contains a number of teleomorphic morphologies convergent with species of Cordyceps s.s. (Cordycipitaceae) and Ophiocordyceps (Ophiocordycipitaceae). Of note, the anamorph genera Metarhizium and Pochonia were found to be associated only with Metacordyceps and demonstrated to be phylogenetically informative for the clade. Several species of Cordyceps considered to have uncertain placements (incertae sedis) in the current taxonomic framework of clavicipitoid fungi were collected during field expeditions mostly in eastern Asia. Species reclassified here in Metacordyceps include Cordyceps atrovirens Kobayasi & Shimizu, Cordyceps indigotica Kobayasi & Shimizu, Cordyceps khaoyaiensis Hywel-Jones, Cordyceps kusanagiensis Kobayasi & Shimizu, Cordyceps martialis Speg., Ophiocordyceps owariensis Kobayasi, Cordyceps pseudoatrovirens Kobayasi & Shimizu and Ophicordyceps owariensis f. viridescens (Uchiy. & Udagawa) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora. Incorporation of these species in a multigene phylogenetic framework of the major clades of clavicipitoid fungi more than doubled the number of species in Metacordyceps and allowed for refinement of morphological concepts for the genus consistent with the phylogenetic structure. Based on these findings we then discuss evolution of this genus, subgeneric relationships, anamorph connections, and suggest additional species that should be confirmed for possible inclusion in Metacordyceps.
Journal Article
Genetic and molecular landscapes of the generalist phytopathogen Botrytis cinerea
by
Singh, Ritu
,
Kliebenstein, Daniel J.
,
Caseys, Celine
in
Angiosperms
,
Botrytis cinerea
,
Bryophytes
2024
Botrytis cinerea Pers. Fr. (teleomorph: Botryotinia fuckeliana) is a necrotrophic fungal pathogen that attacks a wide range of plants. This updated pathogen profile explores the extensive genetic diversity of B. cinerea, highlights the progress in genome sequencing, and provides current knowledge of genetic and molecular mechanisms employed by the fungus to attack its hosts. In addition, we also discuss recent innovative strategies to combat B. cinerea. Taxonomy Kingdom: Fungi, phylum: Ascomycota, subphylum: Pezizomycotina, class: Leotiomycetes, order: Helotiales, family: Sclerotiniaceae, genus: Botrytis, species: cinerea. Host range B. cinerea infects almost all of the plant groups (angiosperms, gymnosperms, pteridophytes, and bryophytes). To date, 1606 plant species have been identified as hosts of B. cinerea. Genetic diversity This polyphagous necrotroph has extensive genetic diversity at all population levels shaped by climate, geography, and plant host variation. Pathogenicity Genetic architecture of virulence and host specificity is polygenic using multiple weapons to target hosts, including secretory proteins, complex signal transduction pathways, metabolites, and mobile small RNA. Disease control strategies Efforts to control B. cinerea, being a high‐diversity generalist pathogen, are complicated. However, integrated disease management strategies that combine cultural practices, chemical and biological controls, and the use of appropriate crop varieties will lessen yield losses. Recently, studies conducted worldwide have explored the potential of small RNA as an efficient and environmentally friendly approach for combating grey mould. However, additional research is necessary, especially on risk assessment and regulatory frameworks, to fully harness the potential of this technology. Botrytis cinerea is a generalist fungal phytopathogen with high genetic diversity that utilizes diverse signalling cascades to infect a wide range of hosts.
Journal Article
Entomopathogens of Amazonian stick insects and locusts are members of the Beauveria species complex (Cordyceps sensu stricto)
by
Læssøe, Thomas
,
Franco-Molano, Ana Esperanza
,
Restrepo, Silvia
in
Anamorph-teleomorph connection
,
anamorphs
,
Beauveria
2014
In the Amazon the only described species of Cordyceps sensu stricto (Hypocreales, Cordycipitaceae) that parasitize insects of Orthopterida (orders Orthoptera and Phasmida) are Cordyceps locustiphila and C. uleana. However, the type specimens for both taxa have been lost and the concepts of these species are uncertain. To achieve a more comprehensive understanding of the systematics of these species, collections of Cordyceps from the Amazon regions of Colombia, Ecuador and Guyana were subjected to morphological, ecological and molecular phylogenetic studies. Phylogenetic analyses were conducted on partial sequences of SSU, LSU, TEF, RPB1 and RPB2 nuclear loci. Two new species are proposed including C. diapheromeriphila, a parasite of Phasmida, and C. acridophila, a parasite of the superfamily Acridomorpha (Orthoptera), which is broadly distributed across the Amazon. For C. locustiphila a lectotypification and an epitypification are made. Cordyceps locustiphila is host specific with Colpolopha (Acridomorpha: Romaleidae), and its distribution coincides with that of its host. The phylogenetic placement of these three species was resolved with strong support in the Beauveria clade of Cordyceps s. str. (Cordycipitaceae). This relationship and the morphological similarity of their yellow stromata with known teleomorphs of the clade, suggest that the holomorphs of these species may include Beauveria or Beauveria-like anamorphs. The varying host specificity of the beauverioid Cordyceps species suggest the potential importance of identifying the natural host taxon before future consideration of strains for use in biological control of pest locusts.
Journal Article
Taxonomic and Phylogenetic Insights into Novel Ascomycota from Forest Woody Litter
2022
While surveying the mycobiomes of dead woody litter in Yunnan Province, China, numerous isolates with affinity to Pleosporales (Dothideomycetes, Ascomycota) were recovered. The present work characterizes two species associated with dead woody twigs found in terrestrial habitats in the Kunming area of Yunnan. The novel taxa were recognized based on a polyphasic approach, including morphological examination and multiple gene phylogenetic analyses (non-translated loci and protein-coding regions). Neokalmusia jonahhulmei sp. nov. is introduced in Didymosphaeriaceae (Pleosporales) as a woody-based saprobic ascomycete that possesses multiloculate ascostromata immersed under a black clypeus-like structure, and three-septate, brown, fusiform, guttulate ascospores. Thyridaria jonahhulmei (Thyridariaceae) is introduced with teleomorphic and anamorphic (coelomycetous) characteristics. The teleomorph has the following characteristics: globose to subglobose ascomata with an ostiolum, a pruinose layer of yellow to reddish- or orange-brown material appearing around the top of the ostiolar necks, and brown, ellipsoid to fusoid, two-to-three-septate, euseptate, rough-walled ascospores; the anamorph features pycnidial conidiomata, phialidic, ampulliform to doliiform, conidiogenous cells, and brown, guttulate, ellipsoidal, aseptate conidia.
Journal Article
Combinations of rolling, mineral oil, sulfur, and phosphorous acid affect Microdochium patch severity
by
McDonald, Brian W.
,
Mattox, Clint M.
,
Pscheidt, Jay W.
in
agronomy
,
disease control
,
experimental design
2020
Microdochium patch is a turfgrass disease that occurs in cool, humid regions caused by the fungal pathogen Microdochium nivale (Fr.) Samuels & Hallett [Teleomorph = Monographella nivalis (Schaffnit) E. Müll]. Fungicide applications are the predominant method of control; however, pesticide restrictions have generated concern regarding the use of traditional chemicals to manage turfgrass pests. The objective of this research was to evaluate the effects of the cultural practice of rolling in combination with applications of mineral oil, S, and/or phosphorous acid (H3PO3) on the suppression of Microdochium patch on an annual bluegrass (Poa annua L.) putting green. A 2‐yr field trial took place from September 2013 to June 2014 and was repeated from September 2014 to June 2015 on a sand‐based annual bluegrass putting green in Corvallis, OR. Experimental design was a 2 × 4 × 2 × 2 randomized complete split‐plot design with four replications. Factors included rolling, the fertility products S and H3PO3 applied alone and in combination, mineral oil treatment, and year. Mineral oil suppressed Microdochium patch although applications led to turfgrass thinning. The combination of S and H3PO3 provided greater Microdochium patch disease suppression compared to applying either alone. Rolling also suppressed Microdochium patch in the second year of this study. Further research to determine how to best utilize these combined cultural practices to manage Microdochium patch is warranted.
Journal Article
Host jumping onto close relatives and across kingdoms by Tyrannicordyceps (Clavicipitaceae) gen. nov. and Ustilaginoidea_(Clavicipitaceae)
by
Harada, Yukio
,
Kepler, Ryan M.
,
Spatafora, Joseph W.
in
adelphoparasite
,
anamorph‐teleomorph connection
,
ancestry
2012
Premise of study: This research seeks to advance understanding of conditions allowing movement of fungal pathogens among hosts. The family Clavicipitaceae contains fungal pathogens exploiting hosts across three kingdoms of life in a pattern that features multiple interkingdom host shifts among plants, animals, and fungi. The tribe Ustilaginoideae potentially represents a third origin of plant pathogenesis, although these species remain understudied. Fungal pathogens that cause ergot are linked morphologically with Clavicipitaceae, but are not yet included in phylogenetic studies. The placement of Ustilaginoideae and ergot pathogens will allow differentiation between the host habitat and host relatedness hypotheses as mechanisms of phylogenetic diversification of Clavicipitaceae. Methods: A multigene data set was assembled for Clavicipitaceae to test phylogenetic placement and ancestral character-state reconstructions for Ustilaginoidea virens and U. dichromonae as well as the ergot mycoparasite Cordyceps fratricida. Microscopic morphological observations of sexual and asexual states were also performed. Key results: Phylogenetic placement of U. virens and U. dichromonae represents a third acquisition of the plant pathogenic lifestyle in Clavicipitaceae. Cordyceps fratricida was also placed in Clavicipitaceae and recognized as a new genus Tyrannicordyceps.Ancestral character state reconstructions indicate initially infecting hemipteran insect hosts facilitates subsequent changes to a plant pathogenic lifestyle. The ancestor of T. fratricida is inferred to have jumped from grasses to pathogens of grasses. Conclusions: The host habitat hypothesis best explains the dynamic evolution of host affiliations seen in Clavicipitaceae and throughout Hypocreales. Co-occurrence in the same habitat has allowed for host shifts from animals to plants, and from plants to fungi.
Journal Article
A teleomorph of the ustilaginalean yeast Moesziomyces antarcticus on barnyardgrass in Japan provides bioresources that degrade biodegradable plastics
by
Tanaka, Eiji
,
Kitamoto, Hiroko
,
Koitabashi, Motoo
in
Biodegradability
,
Biodegradable materials
,
Biodegradation
2019
The basidiomycetous yeast Moesziomyces antarcticus (often cited as Pseudozyma antarctica), originally isolated from a sediment sample obtained from Lake Vanda in Antarctica, was asexually typified but closely related to the smut fungus Moesziomyces bullatus (Ustilaginales). We found a smut fungus on an ovary of barnyardgrass (Echinochloa crus-galli) in Japan, which had been identified as M. bullatus. The teliospores germinated and formed yeast-like colonies. Physiological and phylogenetic studies revealed that the characteristics of the yeast-like isolates coincided with those of “P. antarctica.” We thus recognised the smut fungus as the teleomorph of M. antarcticus, and then emended the description of M. antarcticus based on the holomorph. The identified fungus could degrade certain biodegradable plastics and produce mannosylerythritol lipids (MELs) in similar qualities as the “P. antarctica” type strain. This discovery provides a significant bioresource, as genetically diverse M. antarcticus isolates could be obtained from the smut fungus.
Journal Article