Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
11,000 result(s) for "variance estimation"
Sort by:
Understanding regressions with observations collected at high frequency over long span
In this paper, we analyze regressions with observations collected at small time intervals over a long period of time. For the formal asymptotic analysis, we assume that samples are obtained from continuous time stochastic processes, and let the sampling interval δ shrink down to zero and the sample span T increase up to infinity. In this setup, we show that the standard Wald statistic diverges to infinity and the regression becomes spurious as long as δ → 0 sufficiently fast relative to T → ∞. Such a phenomenon is indeed what is frequently observed in practice for the type of regressions considered in the paper. In contrast, our asymptotic theory predicts that the spuriousness disappears if we use the robust version of the Wald test with an appropriate long‐run variance estimate. This is supported, strongly and unambiguously, by our empirical illustration using the regression of long‐term on short‐term interest rates.
A STUDY OF ERROR VARIANCE ESTIMATION IN LASSO REGRESSION
Variance estimation in the linear model when p > n is a difficult problem. Standard least squares estimation techniques do not apply. Several variance estimators have been proposed in the literature, all with accompanying asymptotic results proving consistency and asymptotic normality under a variety of assumptions. It is found, however, that most of these estimators suffer large biases in finite samples when true underlying signals become less sparse with larger per element signal strength. One estimator seems to merit more attention than it has received in the literature: a residual sum of squares based estimator using Lasso coefficients with regularisation parameter selected adaptively (via cross-validation). In this paper, we review several variance estimators and perform a reasonably extensive simulation study in an attempt to compare their finite sample performance. It would seem from the results that variance estimators with adaptively chosen regularisation parameters perform admirably over a broad range of sparsity and signal strength settings. Finally, some intial theoretical analyses pertaining to these types of estimators are proposed and developed.
Variance estimation using refitted cross‐validation in ultrahigh dimensional regression
Variance estimation is a fundamental problem in statistical modelling. In ultrahigh dimensional linear regression where the dimensionality is much larger than the sample size, traditional variance estimation techniques are not applicable. Recent advances in variable selection in ultrahigh dimensional linear regression make this problem accessible. One of the major problems in ultrahigh dimensional regression is the high spurious correlation between the unobserved realized noise and some of the predictors. As a result, the realized noises are actually predicted when extra irrelevant variables are selected, leading to a serious underestimate of the level of noise. We propose a two‐stage refitted procedure via a data splitting technique, called refitted cross‐validation, to attenuate the influence of irrelevant variables with high spurious correlations. Our asymptotic results show that the resulting procedure performs as well as the oracle estimator, which knows in advance the mean regression function. The simulation studies lend further support to our theoretical claims. The naive two‐stage estimator and the plug‐in one‐stage estimators using the lasso and smoothly clipped absolute deviation are also studied and compared. Their performances can be improved by the refitted cross‐validation method proposed.
ADAPTIVE ROBUST ESTIMATION IN SPARSE VECTOR MODEL
For the sparse vector model, we consider estimation of the target vector, of its ℓ2-norm and of the noise variance. We construct adaptive estimators and establish the optimal rates of adaptive estimation when adaptation is considered with respect to the triplet “noise level—noise distribution—sparsity.” We consider classes of noise distributions with polynomially and exponentially decreasing tails as well as the case of Gaussian noise. The obtained rates turn out to be different from the minimax nonadaptive rates when the triplet is known. A crucial issue is the ignorance of the noise variance. Moreover, knowing or not knowing the noise distribution can also influence the rate. For example, the rates of estimation of the noise variance can differ depending on whether the noise is Gaussian or sub-Gaussian without a precise knowledge of the distribution. Estimation of noise variance in our setting can be viewed as an adaptive variant of robust estimation of scale in the contamination model, where instead of fixing the “nominal” distribution in advance we assume that it belongs to some class of distributions.
Improving estimated sufficient summary plots in dimension reduction using minimization criteria based on initial estimates
In this paper we show that estimated sufficient summary plots can be greatly improved when the dimension reduction estimates are adjusted according to minimization of an objective function. The dimension reduction methods primarily considered are ordinary least squares, sliced inverse regression, sliced average variance Estimates and principal Hessian directions. Some consideration to minimum average variance estimation is also given. Simulations support the usefulness of the approach and three data sets are considered with an emphasis on two- and three-dimensional estimated sufficient summary plots.
Scaled sparse linear regression
Scaled sparse linear regression jointly estimates the regression coefficients and noise level in a linear model. It chooses an equilibrium with a sparse regression method by iteratively estimating the noise level via the mean residual square and scaling the penalty in proportion to the estimated noise level. The iterative algorithm costs little beyond the computation of a path or grid of the sparse regression estimator for penalty levels above a proper threshold. For the scaled lasso, the algorithm is a gradient descent in a convex minimization of a penalized joint loss function for the regression coefficients and noise level. Under mild regularity conditions, we prove that the scaled lasso simultaneously yields an estimator for the noise level and an estimated coefficient vector satisfying certain oracle inequalities for prediction, the estimation of the noise level and the regression coefficients. These inequalities provide sufficient conditions for the consistency and asymptotic normality of the noise-level estimator, including certain cases where the number of variables is of greater order than the sample size. Parallel results are provided for least-squares estimation after model selection by the scaled lasso. Numerical results demonstrate the superior performance of the proposed methods over an earlier proposal of joint convex minimization.
Does Self-Control Training Improve Self-Control? A Meta-Analysis
Self-control is positively associated with a host of beneficial outcomes. Therefore, psychological interventions that reliably improve self-control are of great societal value. A prominent idea suggests that training self-control by repeatedly overriding dominant responses should lead to broad improvements in self-control over time. Here, we conducted a random-effects meta-analysis based on robust variance estimation of the published and unpublished literature on self-control training effects. Results based on 33 studies and 158 effect sizes revealed a small-to-medium effect of g = 0.30, confidence interval (CI 95) [0.17, 0.42]. Moderator analyses found that training effects tended to be larger for (a) self-control stamina rather than strength, (b) studies with inactive compared to active control groups, (c) males than females, and (d) when proponents of the strength model of self-control were (co) authors of a study. Bias-correction techniques suggested the presence of small-study effects and/or publication bias and arrived at smaller effect size estimates (range: gcorrected =. 13 to. 24). The mechanisms underlying the effect are poorly understood. There is not enough evidence to conclude that the repeated control of dominant responses is the critical element driving training effects.
Quantitative evidence synthesis: a practical guide on meta-analysis, meta-regression, and publication bias tests for environmental sciences
Meta-analysis is a quantitative way of synthesizing results from multiple studies to obtain reliable evidence of an intervention or phenomenon. Indeed, an increasing number of meta-analyses are conducted in environmental sciences, and resulting meta-analytic evidence is often used in environmental policies and decision-making. We conducted a survey of recent meta-analyses in environmental sciences and found poor standards of current meta-analytic practice and reporting. For example, only ~ 40% of the 73 reviewed meta-analyses reported heterogeneity (variation among effect sizes beyond sampling error), and publication bias was assessed in fewer than half. Furthermore, although almost all the meta-analyses had multiple effect sizes originating from the same studies, non-independence among effect sizes was considered in only half of the meta-analyses. To improve the implementation of meta-analysis in environmental sciences, we here outline practical guidance for conducting a meta-analysis in environmental sciences. We describe the key concepts of effect size and meta-analysis and detail procedures for fitting multilevel meta-analysis and meta-regression models and performing associated publication bias tests. We demonstrate a clear need for environmental scientists to embrace multilevel meta-analytic models, which explicitly model dependence among effect sizes, rather than the commonly used random-effects models. Further, we discuss how reporting and visual presentations of meta-analytic results can be much improved by following reporting guidelines such as PRISMA-EcoEvo (Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Ecology and Evolutionary Biology). This paper, along with the accompanying online tutorial, serves as a practical guide on conducting a complete set of meta-analytic procedures (i.e., meta-analysis, heterogeneity quantification, meta-regression, publication bias tests and sensitivity analysis) and also as a gateway to more advanced, yet appropriate, methods.
A Review of Hot Deck Imputation for Survey Non-response
Hot deck imputation is a method for handling missing data in which each missing value is replaced with an observed response from a “similar” unit. Despite being used extensively in practice, the theory is not as well developed as that of other imputation methods. We have found that no consensus exists as to the best way to apply the hot deck and obtain inferences from the completed data set. Here we review different forms of the hot deck and existing research on its statistical properties. We describe applications of the hot deck currently in use, including the U.S. Census Bureau's hot deck for the Current Population Survey (CPS). We also provide an extended example of variations of the hot deck applied to the third National Health and Nutrition Examination Survey (NHANES III). Some potential areas for future research are highlighted. L'imputation hot deck est une méthode de gestion des données manquantes dans laquelle chaque valeur manquante est remplacée par une réponse observée à partir d'une unité “similaire.” Bien qu'elle soit largement utilisée en pratique, sa théorie n'est pas aussi développée que celle des autres méthodes d'imputation. Nous avons constaté qu'il n'existe aucun consensus quant à la meilleure faon d'appliquer les hot deck et obtenir des inférences à partir de la série de données complète. Ici, nous passons en revue les différentes formes de hot deck et les recherches existantes sur ses propriétés statistiques. Nous décrivons les applications du hot deck actuellement utilisées, y compris le hot deck du Bureau US du recensement pour la Current Population Survey (CPS). Nous proposons aussi des exemples nombreux de variations du hot deck à la troisième National Health and Nutrition Examination Survey (NHANES III). Certains domaines possibles de recherches futures sont mises en évidence.
Semiparametric Pseudo-Likelihoods in Generalized Linear Models With Nonignorable Missing Data
We consider identifiability and estimation in a generalized linear model in which the response variable and some covariates have missing values and the missing data mechanism is nonignorable and unspecified. We adopt a pseudo-likelihood approach that makes use of an instrumental variable to help identifying unknown parameters in the presence of nonignorable missing data. Explicit conditions for the identifiability of parameters are given. Some asymptotic properties of the parameter estimators based on maximizing the pseudo-likelihood are established. Explicit asymptotic covariance matrix and its estimator are also derived in some cases. For the numerical maximization of the pseudo-likelihood, we develop a two-step iteration algorithm that decomposes a nonconcave maximization problem into two problems of maximizing concave functions. Some simulation results and an application to a dataset from cotton factory workers are also presented.