Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,059 result(s) for "xanthones"
Sort by:
Xanthone Glucosides: Isolation, Bioactivity and Synthesis
Xanthones are secondary metabolites found in plants, fungi, lichens, and bacteria from a variety of families and genera, with the majority found in the Gentianaceae, Polygalaceae, and Clusiaceae. They have a diverse range of bioactivities, including anti-oxidant, anti-bacterial, anti-malarial, anti-tuberculosis, and cytotoxic properties. Xanthone glucosides are a significant branch of xanthones. After glycosylation, xanthones may have improved characteristics (such as solubility and pharmacological activity). Currently, no critical review of xanthone glucosides has been published. A literature survey including reports of naturally occurring xanthone glucosides is included in this review. The isolation, structure, bioactivity, and synthesis of these compounds were all explored in depth.
From Natural Products to New Synthetic Small Molecules: A Journey through the World of Xanthones
This work reviews the contributions of the corresponding author (M.M.M.P.) and her research group to Medicinal Chemistry concerning the isolation from plant and marine sources of xanthone derivatives as well as their synthesis, biological/pharmacological activities, formulation and analytical applications. Although her group activity has been spread over several chemical families with relevance in Medicinal Chemistry, the main focus of the investigation and research has been in the xanthone family. Xanthone derivatives have a variety of activities with great potential for therapeutic applications due to their versatile framework. The group has contributed with several libraries of xanthones derivatives, with a variety of activities such as antitumor, anticoagulant, antiplatelet, anti-inflammatory, antimalarial, antimicrobial, hepatoprotective, antioxidant, and multidrug resistance reversal effects. Besides therapeutic applications, our group has also developed xanthone derivatives with analytical applications as chiral selectors for liquid chromatography and for maritime application as antifouling agents for marine paints. Chemically, it has been challenging to afford green chemistry methods and achieve enantiomeric purity of chiral derivatives. In this review, the structures of the most significant compounds will be presented.
Renoprotective Effects of Mangiferin: Pharmacological Advances and Future Perspectives
Both acute and chronic kidney diseases substantially contribute to the morbidities and mortality of patients worldwide. The existing therapeutics, which are mostly developed from synthetic sources, present some unexpected effects in patients, provoking researchers to explore potential novel alternatives. Natural products that have protective effects against various renal pathologies could be potential drug candidates for kidney diseases. Mangiferin is a natural polyphenol predominantly isolated from Mangifera indica and possesses multiple health benefits against various human ailments, including kidney disease. The main objective of this review is to update the renoprotective potentials of mangiferin with underlying molecular pharmacology and to highlight the recent development of mangiferin-based therapeutics toward kidney problems. Literature published over the past decade suggests that treatment with mangiferin attenuates renal inflammation and oxidative stress, improves interstitial fibrosis and renal dysfunction, and ameliorates structural alteration in the kidney. Therefore, mangiferin could be used as a multi-target therapeutic candidate to treat renal diseases. Although mangiferin-loaded nanoparticles have shown therapeutic promise against various human diseases, there is limited information on the targeted delivery of mangiferin in the kidney. Further research is required to gain insight into the molecular pharmacology of mangiferin targeting kidney diseases and translate the preclinical results into clinical use.
Design and Development of Xanthone Hybrid for Potent Anti‐Inflammatory Effects: Synthesis and Evaluation
Inflammatory responses, while essential for host defence, can precipitate chronic pathologies when sustained. The polyphenolic entity xanthone is distinguished by its capacity to modulate inflammation, notably via the inhibition of the COX‐2 enzyme and associated inflammatory pathways. Additionally, heterocyclic frameworks such as pyrazole, triazole, and imidazole are recognised for their anti‐inflammatory attributes. This investigation was conducted to engineer and synthesise a series of novel hybrid‐xanthone molecules with enhanced anti‐inflammatory capabilities. Utilising computational docking strategies, these hybrid‐xanthone variants were virtually screened against the COX‐2 enzyme structure (PDB ID:1CX2), and the 10 leading candidates were identified based on their binding affinities. These selected entities were synthesised through an optimised three‐stage synthetic route. Subsequent in vitro assessments were performed using the Egg albumin denaturation assay at incremental concentrations. Complementary in vivo experiments involved the Carrageenan‐induced paw edema protocol in Wistar rats, administered at 200 mg/kg to evaluate the anti‐inflammatory response over a period of 6 h. The best percentage inhibition was shown by compound A127(3‐(5′(1,2,4‐Triazole)‐pentyloxy)‐1,6,8‐trihydroxy xanthone), A11(3‐(1′‐(1,2,4‐Triazole)‐methyloxy)‐1,6,8‐trihydroxy xanthone) and A119(3‐(1′‐(1,2,4‐Triazole)‐methyloxy)‐1,6,8‐trihydroxy xanthone) as 60 ± 0.31, 58.57 ± 0.023, and 57.14 ± 0.21 respectively. Spectroscopic characterisation of the compounds was achieved through UV, IR, NMR, and Mass spectrometry techniques. The investigation revealed that out of the synthesised cohort, nine compounds exhibited favourable in silico profiles, and half of these manifested substantial anti‐inflammatory efficacy in both in vitro and in vivo models, outperforming the reference standard. These hybrid‐xanthone molecules demonstrated precise COX‐2 inhibition and maintained an acceptable safety margin in vivo, underscoring their therapeutic promise as anti‐inflammatory agents.
Anti-Bacterial and Anti-Fungal Activity of Xanthones Obtained via Semi-Synthetic Modification of α-Mangostin from Garcinia mangostana
The microbial contamination in food packaging has been a major concern that has paved the way to search for novel, natural anti-microbial agents, such as modified α-mangostin. In the present study, twelve synthetic analogs were obtained through semi-synthetic modification of α-mangostin by Ritter reaction, reduction by palladium-carbon (Pd-C), alkylation, and acetylation. The evaluation of the anti-microbial potential of the synthetic analogs showed higher bactericidal activity than the parent molecule. The anti-microbial studies proved that I E showed high anti-bacterial activity whereas I I showed the highest anti-fungal activity. Due to their microbicidal potential, modified α-mangostin derivatives could be utilized as active anti-microbial agents in materials for the biomedical and food industry.
Potency of Xanthone Derivatives from Garcinia mangostana L. for COVID-19 Treatment through Angiotensin-Converting Enzyme 2 and Main Protease Blockade: A Computational Study
ACE2 and Mpro in the pathology of SARS-CoV-2 show great potential in developing COVID-19 drugs as therapeutic targets, due to their roles as the “gate” of viral entry and viral reproduction. Of the many potential compounds for ACE2 and Mpro inhibition, α-mangostin is a promising candidate. Unfortunately, the potential of α-mangostin as a secondary metabolite with the anti-SARS-CoV-2 activity is hindered due to its low solubility in water. Other xanthone isolates, which also possess the xanthone core structure like α-mangostin, are predicted to be potential alternatives to α-mangostin in COVID-19 treatment, addressing the low drug-likeness of α-mangostin. This study aims to assess the potential of xanthone derivative compounds in the pericarp of mangosteen (Garcinia mangostana L.) through computational study. The study was conducted through screening activity using molecular docking study, drug-likeness prediction using Lipinski’s rule of five filtration, pharmacokinetic and toxicity prediction to evaluate the safety profile, and molecular dynamic study to evaluate the stability of formed interactions. The research results showed that there were 11 compounds with high potential to inhibit ACE2 and 12 compounds to inhibit Mpro. However, only garcinone B, in addition to being indicated as active, also possesses a drug-likeness, pharmacokinetic, and toxicity profile that was suitable. The molecular dynamic study exhibited proper stability interaction between garcinone B with ACE2 and Mpro. Therefore, garcinone B, as a xanthone derivative isolate compound, has promising potential for further study as a COVID-19 treatment as an ACE2 and Mpro inhibitor.
Anti-α-Glucosidase and Antiglycation Activities of α-Mangostin and New Xanthenone Derivatives: Enzymatic Kinetics and Mechanistic Insights through In Vitro Studies
Diabetes mellitus is characterized by chronic hyperglycemia that promotes ROS formation, causing severe oxidative stress. Furthermore, prolonged hyperglycemia leads to glycation reactions with formation of AGEs that contribute to a chronic inflammatory state. This research aims to evaluate the inhibitory activity of α-mangostin and four synthetic xanthenone derivatives against glycation and oxidative processes and on α-glucosidase, an intestinal hydrolase that catalyzes the cleavage of oligosaccharides into glucose molecules, promoting the postprandial glycemic peak. Antiglycation activity was evaluated using the BSA assay, while antioxidant capacity was detected with the ORAC assay. The inhibition of α-glucosidase activity was studied with multispectroscopic methods along with inhibitory kinetic analysis. α-Mangostin and synthetic compounds at 25 µM reduced the production of AGEs, whereas the α-glucosidase activity was inhibited only by the natural compound. α-Mangostin decreased enzymatic activity in a concentration-dependent manner in the micromolar range by a reversible mixed-type antagonism. Circular dichroism revealed a rearrangement of the secondary structure of α-glucosidase with an increase in the contents of α-helix and random coils and a decrease in β-sheet and β-turn components. The data highlighted the anti-α-glucosidase activity of α-mangostin together with its protective effects on protein glycation and oxidation damage.
Gambogic Acid as a Candidate for Cancer Therapy: A Review
Gambogic acid (GA), a kind of dry resin secreted by the tree, is a natural active ingredient with various biological activities, such as anti-cancer, anti-inflammatory, antioxidant, anti-bacterial effects, etc. An increasing amount of evidence indicates that GA has obvious anti-cancer effects via various molecular mechanisms, including the induction of apoptosis, autophagy, cell cycle arrest and the inhibition of invasion, metastasis, angiogenesis. In order to improve the efficacy in cancer treatment, nanometer drug delivery systems have been employed to load GA and form micelles, nanoparticles, nanofibers, and so on. In this review, we aim to offer a summary of chemical structure and properties, anti-cancer activities, drug delivery systems and combination therapy of GA, which might provide a reference to promote the development and clinical application of GA.
Anti-Inflammatory Effect of Xanthones from Hypericum beanii on Macrophage RAW 264.7 Cells through Reduced NO Production and TNF-α, IL-1β, IL-6, and COX-2 Expression
Hypericum beanii N. Robson, a perennial upright herb, predominantly inhabits temperate regions. This species has been utilized for the treatment of various inflammation-related diseases. One new xanthone 3,7-dihydroxy-1,6-dimethoxyxanthone (1) and twenty-three known xanthones (2–24) were isolated from the aerial parts of H. beanii. The structure of the new compound was determined based on high-resolution electrospray ionization mass spectroscopy (HR-ESIMS), nuclear magnetic resonance (NMR), Infrared Spectroscopy (IR), ultraviolet spectrophotometry (UV) spectroscopic data. The anti-inflammatory effects of all the isolates were assessed by measuring the inhibitory effect on nitric oxide (NO) production in LPS-stimulated RAW 264.7 macrophages. Compounds 3,4-dihydroxy-2-methoxyxanthone (15), 1,3,5,6-tetrahydroxyxanthone (19), and 1,3,6,7-tetrahydroxyxanthone (22) exhibited significant anti-inflammatory effects at a concentration of 10 μM with higher potency compared to the positive control quercetin. Furthermore, compounds 15, 19, and 22 reduced inducible NO synthase (iNOS), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, and cyclooxygenase 2 (COX-2) mRNA expression in the LPS-stimulated RAW 264.7 macrophages, suggesting that these compounds may mitigate the synthesis of the aforementioned molecules at the transcriptional level, provisionally confirming their anti-inflammatory efficacy.