MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Limitations of Predicting Substrate Classes on a Sedimentary Complex but Morphologically Simple Seabed
Limitations of Predicting Substrate Classes on a Sedimentary Complex but Morphologically Simple Seabed
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Limitations of Predicting Substrate Classes on a Sedimentary Complex but Morphologically Simple Seabed
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Limitations of Predicting Substrate Classes on a Sedimentary Complex but Morphologically Simple Seabed
Limitations of Predicting Substrate Classes on a Sedimentary Complex but Morphologically Simple Seabed

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Limitations of Predicting Substrate Classes on a Sedimentary Complex but Morphologically Simple Seabed
Limitations of Predicting Substrate Classes on a Sedimentary Complex but Morphologically Simple Seabed
Journal Article

Limitations of Predicting Substrate Classes on a Sedimentary Complex but Morphologically Simple Seabed

2020
Request Book From Autostore and Choose the Collection Method
Overview
The ocean floor, its species and habitats are under pressure from various human activities. Marine spatial planning and nature conservation aim to address these threats but require sufficiently detailed and accurate maps of the distribution of seabed substrates and habitats. Benthic habitat mapping has markedly evolved as a discipline over the last decade, but important challenges remain. To test the adequacy of current data products and classification approaches, we carried out a comparative study based on a common dataset of multibeam echosounder bathymetry and backscatter data, supplemented with groundtruth observations. The task was to predict the spatial distribution of five substrate classes (coarse sediments, mixed sediments, mud, sand, and rock) in a highly heterogeneous area of the south-western continental shelf of the United Kingdom. Five different supervised classification methods were employed, and their accuracy estimated with a set of samples that were withheld. We found that all methods achieved overall accuracies of around 50%. Errors of commission and omission were acceptable for rocky substrates, but high for all sediment types. We predominantly attribute the low map accuracy regardless of mapping approach to inadequacies of the selected classification system, which is required to fit gradually changing substrate types into a rigid scheme, low discriminatory power of the available predictors, and high spatial complexity of the site relative to the positioning accuracy of the groundtruth equipment. Some of these issues might be alleviated by creating an ensemble map that aggregates the individual outputs into one map showing the modal substrate class and its associated confidence or by adopting a quantitative approach that models the spatial distribution of sediment fractions. We conclude that further incremental improvements to the collection, processing and analysis of remote sensing and sample data are required to improve map accuracy. To assess the progress in benthic habitat mapping we propose the creation of benchmark datasets.