MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Using spatiotemporal species distribution models to identify temporally evolving hotspots of species co-occurrence
Using spatiotemporal species distribution models to identify temporally evolving hotspots of species co-occurrence
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Using spatiotemporal species distribution models to identify temporally evolving hotspots of species co-occurrence
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Using spatiotemporal species distribution models to identify temporally evolving hotspots of species co-occurrence
Using spatiotemporal species distribution models to identify temporally evolving hotspots of species co-occurrence

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Using spatiotemporal species distribution models to identify temporally evolving hotspots of species co-occurrence
Using spatiotemporal species distribution models to identify temporally evolving hotspots of species co-occurrence
Journal Article

Using spatiotemporal species distribution models to identify temporally evolving hotspots of species co-occurrence

2015
Request Book From Autostore and Choose the Collection Method
Overview
Identifying spatiotemporal hotspots is important for understanding basic ecological processes, but is particularly important for species at risk. A number of terrestrial and aquatic species are indirectly affected by anthropogenic impacts, simply because they tend to be associated with species that are targeted for removals. Using newly developed statistical models that allow for the inclusion of time-varying spatial effects, we examine how the co-occurrence of a targeted and nontargeted species can be modeled as a function of environmental covariates (temperature, depth) and interannual variability. The nontarget species in our case study (eulachon) is listed under the U.S. Endangered Species Act, and is encountered by fisheries off the U.S. West Coast that target pink shrimp. Results from our spatiotemporal model indicated that eulachon bycatch risk decreases with depth and has a convex relationship with sea surface temperature. Additionally, we found that over the 2007-2012 period, there was support for an increase in eulachon density from both a fishery data set (+40%) and a fishery-independent data set (+55%). Eulachon bycatch has increased in recent years, but the agreement between these two data sets implies that increases in bycatch are not due to an increase in incidental targeting of eulachon by fishing vessels, but because of an increasing population size of eulachon. Based on our results, the application of spatiotemporal models to species that are of conservation concern appears promising in identifying the spatial distribution of environmental and anthropogenic risks to the population.