MbrlCatalogueTitleDetail

Do you wish to reserve the book?
An Improved Copula‐Based Framework for Efficient Global Sensitivity Analysis
An Improved Copula‐Based Framework for Efficient Global Sensitivity Analysis
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
An Improved Copula‐Based Framework for Efficient Global Sensitivity Analysis
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
An Improved Copula‐Based Framework for Efficient Global Sensitivity Analysis
An Improved Copula‐Based Framework for Efficient Global Sensitivity Analysis

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
An Improved Copula‐Based Framework for Efficient Global Sensitivity Analysis
An Improved Copula‐Based Framework for Efficient Global Sensitivity Analysis
Journal Article

An Improved Copula‐Based Framework for Efficient Global Sensitivity Analysis

2024
Request Book From Autostore and Choose the Collection Method
Overview
Global sensitivity analysis (GSA) enhances our understanding of computational models and simplifies model parameter estimation. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a variance‐based GSA framework. The advantage of VISCOUS is that it can use existing model input‐output data (e.g., water model parameters‐responses) to estimate the first‐ and total‐order Sobol’ sensitivity indices. This study improves VISCOUS by refining its handling of marginal densities of the Gaussian mixture copula model (GMCM). We then evaluate VISCOUS using three types of generic functions relevant to water system models. We observe that its performance depends on function dimension, input‐output data size, and non‐identifiability. Function dimension refers to the number of uncertain input factors analyzed in GSA, and non‐identifiability refers to the inability to estimate GMCM parameters. VISCOUS proves powerful in estimating first‐order sensitivity with a small amount of input‐output data (e.g., 200 in this study), regardless of function dimension. It always ranks input factors correctly in both first‐ and total‐order terms. For estimating total‐order sensitivity, it is recommended to use VISCOUS when the function dimension is not very high (e.g., less than 20) due to the challenge of producing sufficient input‐output data for accurate GMCM inferences (e.g., more than 10,000 data). In cases where all input factors are equally important (a rarity in practice), VISCOUS faces non‐identifiability issues that impact its performance. We provide a didactic example and an open‐source Python code, pyVISCOUS, for broader user adoption. Plain Language Summary Global sensitivity analysis is a method used to better understand and estimate parameters in computational models. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a framework for this purpose. It estimates the sensitivity of model outcomes to different uncertain model input factors by using the existing input and output data (e.g., water model parameters and responses). This study improved VISCOUS and tested it with various functions. We found that its performance depends on the number of input factors, the amount of input and output data available, and our ability to determine VISCOUS's parameters. VISCOUS is good at estimating the importance of individual input factors, even with limited data (e.g., 200) and numerous input factors. It always correctly ranks input factor importance, whether individually or collectively. When estimating the importance of input factors together, VISCOUS is recommended when the number of input factors is not very high (e.g., <20), as it is challenging to generate enough input and output data for estimating VISCOUS's parameters. When all input factors hold equal importance (though rare in practice), VISCOUS's performance is impacted due to the difficulty of estimating VISCOUS's parameters. To help people use VISCOUS, we provide an example and an open‐source Python code, pyVISCOUS. Key Points We improve the VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) global sensitivity analysis framework in its handling of marginal densities of the Gaussian mixture copula model We evaluate VISCOUS and demonstrate how its performance is affected by function dimension, input‐output size, and non‐identifiability We provide a didactic example and an open‐source Python code called pyVISCOUS to make VISCOUS easier to understand and apply