MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Assimilation of Sentinel‐Based Leaf Area Index for Modeling Surface‐Ground Water Interactions in Irrigation Districts
Assimilation of Sentinel‐Based Leaf Area Index for Modeling Surface‐Ground Water Interactions in Irrigation Districts
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Assimilation of Sentinel‐Based Leaf Area Index for Modeling Surface‐Ground Water Interactions in Irrigation Districts
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Assimilation of Sentinel‐Based Leaf Area Index for Modeling Surface‐Ground Water Interactions in Irrigation Districts
Assimilation of Sentinel‐Based Leaf Area Index for Modeling Surface‐Ground Water Interactions in Irrigation Districts

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Assimilation of Sentinel‐Based Leaf Area Index for Modeling Surface‐Ground Water Interactions in Irrigation Districts
Assimilation of Sentinel‐Based Leaf Area Index for Modeling Surface‐Ground Water Interactions in Irrigation Districts
Journal Article

Assimilation of Sentinel‐Based Leaf Area Index for Modeling Surface‐Ground Water Interactions in Irrigation Districts

2024
Request Book From Autostore and Choose the Collection Method
Overview
Vegetation‐related processes, such as evapotranspiration (ET), irrigation water withdrawal, and groundwater recharge, are influencing surface water (SW)—groundwater (GW) interaction in irrigation districts. Meanwhile, conventional numerical models of SW‐GW interaction are not developed based on satellite‐based observations of vegetation indices. In this paper, we propose a novel methodology for multivariate assimilation of Sentinel‐based leaf area index (LAI) as well as in‐situ records of streamflow. Moreover, the GW model is initially calibrated based on water table observations. These observations are assimilated into the SWAT‐MODFLOW model to accurately analyze the advantage of considering high‐resolution LAI data for SW‐GW modeling. We develop a data assimilation (DA) framework for SWAT‐MODFLOW model using the particle filter based on the sampling importance resampling (PF‐SIR). Parameters of MODFLOW are calibrated using the parameter estimation (PEST) algorithm and based on in‐situ observation of the GW table. The methodology is implemented over the Mahabad Irrigation Plain, located in the Urmia Lake Basin in Iran. Some DA scenarios are closely examined, including univariate LAI assimilation (L‐DA), univariate streamflow assimilation (S‐DA), and multivariate streamflow‐LAI assimilation (SL‐DA). Results show that the SL‐DA scenario results in the best estimations of streamflow, LAI, and GW level, compared to other DA scenarios. The streamflow DA does not improve the accuracy of LAI estimation, while the LAI assimilation scenario results in significant improvements in streamflow simulation, where, compared to the open loop run, the (absolute) bias decreases from 75% to 6%. Moreover, S‐DA, compared to L‐DA, underestimates irrigation water use and demand as well as potential and actual crop yield. Key Points Using source code modification, SWAT‐MODFLOW is connected to sequential DA Multivariate assimilation of streamflow, GW‐level and leaf area index (LAI) shows the best results Streamflow data assimilation does not improve LAI simulation, while LAI data assimilation improves streamflow simulation