MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Lead Phytoextraction from Contaminated Soil with High‐Biomass Plant Species
Lead Phytoextraction from Contaminated Soil with High‐Biomass Plant Species
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Lead Phytoextraction from Contaminated Soil with High‐Biomass Plant Species
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Lead Phytoextraction from Contaminated Soil with High‐Biomass Plant Species
Lead Phytoextraction from Contaminated Soil with High‐Biomass Plant Species

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Lead Phytoextraction from Contaminated Soil with High‐Biomass Plant Species
Lead Phytoextraction from Contaminated Soil with High‐Biomass Plant Species
Journal Article

Lead Phytoextraction from Contaminated Soil with High‐Biomass Plant Species

2002
Request Book From Autostore and Choose the Collection Method
Overview
In this study, cabbage [Brassica rapa L. subsp. chinensis (L.) Hanelt cv. Xinza No 1], mung bean [Vigna radiata (L.) R. Wilczek var. radiata cv. VC‐3762], and wheat (Triticum aestivum L. cv. Altas 66) were grown in Pb‐contaminated soils. Application of ethylenediaminetetraacetic acid (EDTA) (3.0 mmol of EDTA/kg soil) to the soil significantly increased the concentrations of Pb in the shoots and roots of all the plants. Lead concentrations in the cabbage shoots reached 5010 and 4620 mg/kg dry matter on Days 7 and 14 after EDTA application, respectively. EDTA was the best in solubilizing soil‐bound Pb and enhancing Pb accumulation in the cabbage shoots among various chelates (EDTA, diethylenetriaminepentaacetic acid [DTPA], hydroxyethylenediaminetriacetic acid [HEDTA], nitrilotriacetic acid [NTA], and citric acid). Results of the sequential chemical extraction of soil samples showed that the Pb concentrations in the carbonate–specifically adsorbed and Fe–Mn oxide phases were significantly decreased after EDTA treatment. The results indicated that EDTA solubilized Pb mainly from these two phases in the soil. The relative efficiency of EDTA enhancing Pb accumulation in shoots (defined as the ratio of shoot Pb concentration to EDTA concentration applied) was highest when 1.5 or 3.0 mmol EDTA/kg soil was used. Application of EDTA in three separate doses was most effective in enhancing the accumulation of Pb in cabbage shoots and decreased mobility of Pb in soil compared with one‐ and two‐dose application methods. This approach could help to minimize the amount of chelate applied in the field and to reduce the potential risk of soluble Pb movement into ground water.