MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Development of a high quality thin diamond membrane with embedded nitrogen-vacancy centers for hybrid spin-mechanical quantum systems
Development of a high quality thin diamond membrane with embedded nitrogen-vacancy centers for hybrid spin-mechanical quantum systems
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Development of a high quality thin diamond membrane with embedded nitrogen-vacancy centers for hybrid spin-mechanical quantum systems
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Development of a high quality thin diamond membrane with embedded nitrogen-vacancy centers for hybrid spin-mechanical quantum systems
Development of a high quality thin diamond membrane with embedded nitrogen-vacancy centers for hybrid spin-mechanical quantum systems

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Development of a high quality thin diamond membrane with embedded nitrogen-vacancy centers for hybrid spin-mechanical quantum systems
Development of a high quality thin diamond membrane with embedded nitrogen-vacancy centers for hybrid spin-mechanical quantum systems
Paper

Development of a high quality thin diamond membrane with embedded nitrogen-vacancy centers for hybrid spin-mechanical quantum systems

2016
Request Book From Autostore and Choose the Collection Method
Overview
Hybrid quantum systems (HQSs) have attracted several research interests in the last years. In this Letter, we report on the design, fabrication, and characterization of a novel diamond architecture for HQSs that consists of a high quality thin circular diamond membrane with embedded near-surface nitrogen-vacancy centers (NVCs). To demonstrate this architecture, we employed the NVCs by means of their optical and spin interfaces as nanosensors of the motion of the membrane under static pressure and in-resonance vibration, as well as the residual stress of the membrane. Driving the membrane at its fundamental resonance mode, we observed coupling of this vibrational mode to the spin of the NVCs by Hahn echo signal. Our realization of this architecture will enable futuristic HQS-based applications in diamond piezometry and vibrometry, as well as spin-mechanical and mechanically mediated spin-spin coupling in quantum information science.