Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Macrolide Resistance and In Vitro Potentiation by Peptidomimetics in Porcine Clinical Escherichia coli
by
Guardabassi, Luca
, Gehring, Ronette
, Damborg, Peter
, Franzyk, Henrik
, Ma, Yibing
, Subramani, Prabha
, Pirolo, Mattia
in
Animals
/ Anti-Bacterial Agents - pharmacology
/ antibiotic potentiation
/ Antibiotics
/ Antimicrobial activity
/ Antimicrobial agents
/ Antimicrobial Chemotherapy
/ Azithromycin
/ Azithromycin - pharmacology
/ Drug development
/ Drug Resistance, Bacterial - genetics
/ E coli
/ Enteritis
/ Erythromycin
/ Erythromycin - pharmacology
/ Escherichia coli
/ Escherichia coli - genetics
/ Escherichia coli Infections - veterinary
/ Genes
/ Genomes
/ Gram-negative bacteria
/ Hogs
/ Horizontal transfer
/ Intestine
/ macrolide resistance
/ Macrolides - pharmacology
/ Minimum inhibitory concentration
/ Mutation
/ Neomycin
/ Oral administration
/ Peptides
/ Peptidomimetics
/ Peptidomimetics - pharmacology
/ pigs
/ Research Article
/ Spiramycin
/ Staphylococcus infections
/ Strains (organisms)
/ Swine
/ Tilmicosin
/ Tylosin
/ Tylosin - pharmacology
/ Whole genome sequencing
2022
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Macrolide Resistance and In Vitro Potentiation by Peptidomimetics in Porcine Clinical Escherichia coli
by
Guardabassi, Luca
, Gehring, Ronette
, Damborg, Peter
, Franzyk, Henrik
, Ma, Yibing
, Subramani, Prabha
, Pirolo, Mattia
in
Animals
/ Anti-Bacterial Agents - pharmacology
/ antibiotic potentiation
/ Antibiotics
/ Antimicrobial activity
/ Antimicrobial agents
/ Antimicrobial Chemotherapy
/ Azithromycin
/ Azithromycin - pharmacology
/ Drug development
/ Drug Resistance, Bacterial - genetics
/ E coli
/ Enteritis
/ Erythromycin
/ Erythromycin - pharmacology
/ Escherichia coli
/ Escherichia coli - genetics
/ Escherichia coli Infections - veterinary
/ Genes
/ Genomes
/ Gram-negative bacteria
/ Hogs
/ Horizontal transfer
/ Intestine
/ macrolide resistance
/ Macrolides - pharmacology
/ Minimum inhibitory concentration
/ Mutation
/ Neomycin
/ Oral administration
/ Peptides
/ Peptidomimetics
/ Peptidomimetics - pharmacology
/ pigs
/ Research Article
/ Spiramycin
/ Staphylococcus infections
/ Strains (organisms)
/ Swine
/ Tilmicosin
/ Tylosin
/ Tylosin - pharmacology
/ Whole genome sequencing
2022
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Macrolide Resistance and In Vitro Potentiation by Peptidomimetics in Porcine Clinical Escherichia coli
by
Guardabassi, Luca
, Gehring, Ronette
, Damborg, Peter
, Franzyk, Henrik
, Ma, Yibing
, Subramani, Prabha
, Pirolo, Mattia
in
Animals
/ Anti-Bacterial Agents - pharmacology
/ antibiotic potentiation
/ Antibiotics
/ Antimicrobial activity
/ Antimicrobial agents
/ Antimicrobial Chemotherapy
/ Azithromycin
/ Azithromycin - pharmacology
/ Drug development
/ Drug Resistance, Bacterial - genetics
/ E coli
/ Enteritis
/ Erythromycin
/ Erythromycin - pharmacology
/ Escherichia coli
/ Escherichia coli - genetics
/ Escherichia coli Infections - veterinary
/ Genes
/ Genomes
/ Gram-negative bacteria
/ Hogs
/ Horizontal transfer
/ Intestine
/ macrolide resistance
/ Macrolides - pharmacology
/ Minimum inhibitory concentration
/ Mutation
/ Neomycin
/ Oral administration
/ Peptides
/ Peptidomimetics
/ Peptidomimetics - pharmacology
/ pigs
/ Research Article
/ Spiramycin
/ Staphylococcus infections
/ Strains (organisms)
/ Swine
/ Tilmicosin
/ Tylosin
/ Tylosin - pharmacology
/ Whole genome sequencing
2022
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Macrolide Resistance and In Vitro Potentiation by Peptidomimetics in Porcine Clinical Escherichia coli
Journal Article
Macrolide Resistance and In Vitro Potentiation by Peptidomimetics in Porcine Clinical Escherichia coli
2022
Request Book From Autostore
and Choose the Collection Method
Overview
Acquired macrolide resistance is poorly studied in Escherichia coli because of intrinsic resistance and limited antimicrobial activity in Gram-negative bacteria. This study reveals new information on the prevalence and distribution of macrolide resistance determinants in a comprehensive collection of porcine clinical E. coli from Denmark. Escherichia coli is intrinsically resistant to macrolides due to outer membrane impermeability, but may also acquire macrolide resistance genes by horizontal transfer. We evaluated the prevalence and types of acquired macrolide resistance determinants in pig clinical E. coli , and we assessed the ability of peptidomimetics to potentiate different macrolide subclasses against strains resistant to neomycin, a first-line antibiotic in the treatment of pig-enteric infections. The erythromycin MIC distribution was determined in 324 pig clinical E. coli isolates, and 62 neomycin-resistant isolates were further characterized by genome sequencing and MIC testing of azithromycin, spiramycin, tilmicosin, and tylosin. The impact on potency achieved by combining these macrolides with three selected peptidomimetic compounds was determined by checkerboard assays in six strains representing different genetic lineages and macrolide resistance gene profiles. Erythromycin MICs ranged from 16 to >1,024 μg/mL. Azithromycin showed the highest potency in wild-type strains (1 to 8 μg/mL), followed by erythromycin (16 to 128 μg/mL), tilmicosin (32 to 256 μg/mL), and spiramycin (128 to 256 μg/mL). Isolates with elevated MIC mainly carried erm (B), either alone or in combination with other acquired macrolide resistance genes, including erm (42), mef (C), mph (A), mph (B), and mph (G). All peptidomimetic-macrolide combinations exhibited synergy (fractional inhibitory concentration index [FICI] < 0.5) with a 4- to 32-fold decrease in the MICs of macrolides. Interestingly, the MICs of tilmicosin in wild-type strains were reduced to concentrations (4 to 16 μg/mL) that can be achieved in the pig intestinal tract after oral administration, indicating that peptidomimetics can potentially be employed for repurposing tilmicosin in the management of E. coli enteritis in pigs. IMPORTANCE Acquired macrolide resistance is poorly studied in Escherichia coli because of intrinsic resistance and limited antimicrobial activity in Gram-negative bacteria. This study reveals new information on the prevalence and distribution of macrolide resistance determinants in a comprehensive collection of porcine clinical E. coli from Denmark. Our results contribute to understanding the correlation between genotypic and phenotypic macrolide resistance in E. coli . From a clinical standpoint, our study provides an initial proof of concept that peptidomimetics can resensitize E. coli to macrolide concentrations that may be achieved in the pig intestinal tract after oral administration. The latter result has implications for animal health and potential applications in veterinary antimicrobial drug development in view of the high rates of antimicrobial-resistant E. coli isolated from enteric infections in pigs and the lack of viable alternatives for treating these infections.
Publisher
American Society for Microbiology
MBRLCatalogueRelatedBooks
Related Items
Related Items
This website uses cookies to ensure you get the best experience on our website.