MbrlCatalogueTitleDetail

Do you wish to reserve the book?
An abundance of small exoplanets around stars with a wide range of metallicities
An abundance of small exoplanets around stars with a wide range of metallicities
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
An abundance of small exoplanets around stars with a wide range of metallicities
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
An abundance of small exoplanets around stars with a wide range of metallicities
An abundance of small exoplanets around stars with a wide range of metallicities

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
An abundance of small exoplanets around stars with a wide range of metallicities
An abundance of small exoplanets around stars with a wide range of metallicities
Journal Article

An abundance of small exoplanets around stars with a wide range of metallicities

2012
Request Book From Autostore and Choose the Collection Method
Overview
Whereas large planets, such as gas giants, are more likely to form around high-metallicity stars, terrestrial-sized planets are found to form around stars with a wide range of metallicities, indicating that they may be widespread in the disk of the Galaxy. Exoplanets around metal-poor stars A key discovery of the past decade in the field of exoplanet research was the realization that stars of high metallicity are those most likely to harbour giant exoplanets, supporting the model in which planets form by the accumulation of dust and ice particles. Whether the planet–metallicity correlation holds for terrestrial planets remained unclear, but the Kepler mission's discovery last year of hundreds of small exoplanet candidates provided an opportunity to find out. The spectroscopic metallicities of the host stars of 226 small exoplanet candidates have now been determined. The smaller ones, of less than four Earth radii, were found around stars with a wide range of metallicities, on average close to that of the Sun. Larger planets were more common around stars of high metallicity. These findings suggest that terrestrial planets may be widespread in the disk of the Galaxy, with no special requirement of enhanced metallicity for their formation. The abundance of heavy elements (metallicity) in the photospheres of stars similar to the Sun provides a ‘fossil’ record of the chemical composition of the initial protoplanetary disk. Metal-rich stars are much more likely to harbour gas giant planets 1 , 2 , 3 , 4 , supporting the model that planets form by accumulation of dust and ice particles 5 . Recent ground-based surveys suggest that this correlation is weakened for Neptunian-sized planets 4 , 6 , 7 , 8 , 9 . However, how the relationship between size and metallicity extends into the regime of terrestrial-sized exoplanets is unknown. Here we report spectroscopic metallicities of the host stars of 226 small exoplanet candidates discovered by NASA’s Kepler mission 10 , including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but on average a metallicity close to that of the Sun), whereas large planets preferentially form around stars with higher metallicities. This observation suggests that terrestrial planets may be widespread in the disk of the Galaxy, with no special requirement of enhanced metallicity for their formation.