MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Immunosuppressive tumor microenvironment of osteosarcoma
Immunosuppressive tumor microenvironment of osteosarcoma
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Immunosuppressive tumor microenvironment of osteosarcoma
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Immunosuppressive tumor microenvironment of osteosarcoma
Immunosuppressive tumor microenvironment of osteosarcoma

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Immunosuppressive tumor microenvironment of osteosarcoma
Immunosuppressive tumor microenvironment of osteosarcoma
Paper

Immunosuppressive tumor microenvironment of osteosarcoma

2023,2024
Request Book From Autostore and Choose the Collection Method
Overview
Background - Osteosarcoma (OS) is the most common malignant bone tumor in children. OS is characterized by a high degree of genomic instability, resulting in copy-number alterations and genomic rearrangements with no disease-defining recurrent mutations. Given the diverse genomic landscape of OS and the difficulty of identifying druggable therapeutic targets, use of immunotherapy techniques appears lucrative. However, clinical trials based on molecular characterization have failed to find new effective therapies, and outcomes have not improved over the last 40 years. Materials/Methods - We performed single-cell RNA sequencing (scRNA-seq) using the 10x Genomics Chromium platform on six fresh tumor biopsy samples from pediatric OS patients. Raw data was processed using 10x CellRanger to produce transcript read counts for each cell. After filtering low-quality cells and doublet removal, counts were normalized using Seurat, and cells were integrated across samples with Harmony. Data was combined with a previously-published OS scRNA-seq cohort of six samples (GSE162454). Two additional OS samples were profiled using 10x Genomics Visium spatial transcriptomics for validation of discovered subtypes and to add spatial context. Results - Clustering identified 16 major cell types based on expression of canonical cell markers. Several immunosuppressive cell types were identified via subclustering of major cell types, including neutrophil myeloid-derived suppressor cells (MDSCs), regulatory and exhausted T-cells, and LAMP3+ dendritic cells. Markers for the cell types found in OS were identified for further validation using imaging techniques, including Visium spatial transcriptomics. We performed deconvolution using the scRNA-seq cell identities to examine colocalization of discovered cell types. Overall, the discovered clusters were common between patients, showing consistent cell type proportions. However, we found patient-specific differences in the frequency of some cell types, with one sample showing a higher proportion of T-cells along with increased presence of colocalized IFN-stimulated macrophages, and the other with a greater presence of neutrophils/MDSCs. Conclusions - Using single-cell transcriptomics, we were able to discover the presence of multiple immunosuppressive cell subtypes of neutrophils, T-cells, and dendritic cells. Additionally, spatial transcriptomics revealed multiple similar clusters between samples, and common colocalization of the discovered cell types within those clusters. However, differences in T-cell presence and interferon induction may be indicative of patient-specific immunogenicity in osteosarcoma tumors.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Authorship updated, additional funding sources noted.* https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162454