MbrlCatalogueTitleDetail

Do you wish to reserve the book?
31 Dynamic change of PD-L1 expression on extracellular vesicles predicts response to immune-checkpoint inhibitors in non-small cell lung cancer patients
31 Dynamic change of PD-L1 expression on extracellular vesicles predicts response to immune-checkpoint inhibitors in non-small cell lung cancer patients
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
31 Dynamic change of PD-L1 expression on extracellular vesicles predicts response to immune-checkpoint inhibitors in non-small cell lung cancer patients
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
31 Dynamic change of PD-L1 expression on extracellular vesicles predicts response to immune-checkpoint inhibitors in non-small cell lung cancer patients
31 Dynamic change of PD-L1 expression on extracellular vesicles predicts response to immune-checkpoint inhibitors in non-small cell lung cancer patients

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
31 Dynamic change of PD-L1 expression on extracellular vesicles predicts response to immune-checkpoint inhibitors in non-small cell lung cancer patients
31 Dynamic change of PD-L1 expression on extracellular vesicles predicts response to immune-checkpoint inhibitors in non-small cell lung cancer patients
Journal Article

31 Dynamic change of PD-L1 expression on extracellular vesicles predicts response to immune-checkpoint inhibitors in non-small cell lung cancer patients

2020
Request Book From Autostore and Choose the Collection Method
Overview
BackgroundImmune-checkpoint inhibitors (ICIs) have revolutionized the treatment of advanced/metastatic non-small cell lung cancer patients (NSCLC), however, only a small subset of patients derives clinical benefit.1–3 To date, PD-L1 immunohistochemical evaluation is the gold-standard assay and the only approved biomarker, but associated with several limitations due to technical and biological factors such as spatial and temporal tumor heterogeneity.4 5 In this context, liquid biopsies emerge as novel powerful tools that could allow the non-invasive real-time characterization of the tumor PD-L1 status. In particular, extracellular vesicles (EVs), defined as cell-derived double-membrane structures involved in cell communication, hold strong potential as tissue surrogates. Recent studies have suggested that EV PD-L1 could stratify melanoma patients receiving ICIs, but none has showed the predictive value of this biomarker in NSCLC patients.6 7 We hypothesize that EV PD-L1 cargo can serve to stratify the response to ICIs in NSCLC patients.MethodsThis study enrolled advanced/metastatic NSCLC patients receiving ICI treatment. Plasma samples were obtained at baseline (T1) and at 8 weeks (T2) during the first response evaluation. Patients were classified as responders when showing partial, stable or complete response or as non-responders when manifesting progressive disease following RECIST v1.1.8 Plasma EVs were isolated by standard serial ultracentrifugation methods and characterized according to ISEV recommendations.9 10 Tissue PD-L1 expression was measured by immunohistochemistry while EV PD-L1 expression was measured by immunoblot. A predictive model was created by logistic-regression and a bootstrap corrected ROC curve to validate the results.ResultsPaired plasma samples from 21 patients were analyzed. PD-L1 tissue expression was not correlated with treatment response (p=0.394) nor matched the baseline EV PD-L1 levels (p=0.337) (figure 1.A). However, the dynamics of EV PD-L1 (T1-T2) correlated with the treatment response, observing an increase of PD-L1 expression in non-responders and a decrease or stable levels in responders (p=0.043) (figure 1.B). The predictive model reported an AUC=0.85, 90% CI=0.72–0.97, with 74.2% sensitivity and 73.5% specificity (figure 1.C). Moreover, the increase of EV PD-L1 was associated with shorter overall survival (HR=4.34, p=0.037) and shorter progression-free survival (HR=5.06, p=0.025) (figure 1 D & E).ConclusionsOur preliminary-study showed, for the first time, the predictive and prognostic value of EV PD-L1 dynamic changes in immunotherapy-treated NSCLC patients. Although larger studies are needed to validate these results, this promising biomarker could have important clinical implications, guiding treatment decisions in near real-time and improving the outcome of patients that could benefit from ICIs.AcknowledgementsWe would like to extend our gratitude to the all the patients that participated in the study.Abstract 31 Figure 1Graphical abstractTop: Study design and methodology. Bottom: Results. A) Representative images of PD-L1 expression in tissue and EV in matching patients showing no correlation between tissue and EV. B) Dynamic change of PD-L1 expression in EVs during the treatment. C) ROC curve and AUC before and after bootstrap correction for the predictive model based on changes in EV PD-L1 expression to identify responders. D & E) Kaplan-meier for overall survival (OS) and progression-free survival (PFS) according to the increase or the stable/decrease of the EV PD-L1 expression [Created with BioRender]Ethics ApprovalAll patients consented to an Institutional Review Board–approved protocol (A.O. Papardo, Messina, Italy). Biological material was transfer to the University of Maryland, USA under signed MTA between both institutions (MTA/2020-13111).ReferencesRittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 2017;389:255–265.Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med 2015;373:1627–1639.Chen DS, Mellman I: Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity 2013, 39:1–10.Zou WP, Wolchok JD, Chen LP. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016; 8:328rv4.Patel SP, Kurzrock R. PD-L1 Expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 2015;14:847–56.Cordonnier M, Nardin C, Chanteloup G, et al. Tracking the evolution of circulating exosomal-PD-L1 to monitor melanoma patients. J Extracell Vesicles 2020;9:1710899.Del Re M, Marconcini R, Pasquini G, et al. PD-L1 mRNA expression in plasma-derived exosomes is associated with response to anti-PD-1 antibodies in melanoma and NSCLC. Br J Cancer 2018;118:820–824.Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228–47.Reclusa P, Verstraelen P, Taverna S, et al. Improving extracellular vesicles visualization: From static to motion. Sci Rep 2020;10(1):6494.Thery C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018;7:1535750.
Publisher
BMJ Publishing Group LTD,BMJ Publishing Group