Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Prediction of prognosis in patients with tetralogy of Fallot based on deep learning imaging analysis
by
Singer, Helmut
, Boysen, Arnulf
, Bethge, Martin
, Kehl, Hans-Gerd
, Handke, Ronald-Peter
, Schlensak, Christian
, Sigler, Matthias
, Magsaam, Annette
, Hebe, Joachim
, Sieverding, Ludger
, Photiadis, Joachim
, Nekarda, Torsten
, Brosi, Wolfgang
, Niehues, Tim
, Reichert, Hagen
, Wilken, Martin
, Darrelmann, Christine
, Menke, Thomas
, Haas, Nikolaus A.
, Kleideiter, Ulrich
, Karck, Matthias
, Baier, Georg
, Peters, Björn
, Akintürk, Hakan
, Kroll, Johannes
, Köster, Stefan
, Diller, Gerhard Paul
, Miera, Oliver
, Böning, Andreas
, Liebaug, Uta
, Hess, Steffen
, Breuer, Johannes
, Scheewe, Jens
, Seitz, Uwe
, Haverkämper, Guido
, Westhoff-Bleck, Mechthild
, Bauer, Ulrike M M
, Cesnjevar, Robert
, Trusen, Burkhard
, Schoetzau, Jörg
, Heilmann, Antje
, Potthoff, Ludger
, Karstedt, Jens
, Orwat, Stefan
, Koch, Heike
, Feil, Elmo
, Tarusinov, Gleb
, Zink, Stefan
, Weiss, Katja
, Bahlmann, Jens
, Franzbach, Birgit
, Eberhard, Michael
, Streble, Joachim
, Bahle, Roswitha
, Stiller, Brigitte
, Streichan, Frank
, Boeckel, Thomas
, Schäfers, Hans-Joachim
, Mayatepek, Ertan
, Neudorf, Ulrich
, Willmann, Olaf
, Hauser, Michael
, Scheid, Michael
, Freund, Matthias W.
, Böthig, Dietmar
, R
in
advanced cardiac imaging
/ Algorithms
/ Cardiac arrhythmia
/ cardiac magnetic resonance (CMR) imaging
/ Cardiology
/ Cardiovascular disease
/ Congenital diseases
/ Congenital heart disease
/ Datasets
/ Deep learning
/ Ejection fraction
/ Heart
/ Medical prognosis
/ Patients
/ Software
/ tetralogy of Fallot
2020
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Prediction of prognosis in patients with tetralogy of Fallot based on deep learning imaging analysis
by
Singer, Helmut
, Boysen, Arnulf
, Bethge, Martin
, Kehl, Hans-Gerd
, Handke, Ronald-Peter
, Schlensak, Christian
, Sigler, Matthias
, Magsaam, Annette
, Hebe, Joachim
, Sieverding, Ludger
, Photiadis, Joachim
, Nekarda, Torsten
, Brosi, Wolfgang
, Niehues, Tim
, Reichert, Hagen
, Wilken, Martin
, Darrelmann, Christine
, Menke, Thomas
, Haas, Nikolaus A.
, Kleideiter, Ulrich
, Karck, Matthias
, Baier, Georg
, Peters, Björn
, Akintürk, Hakan
, Kroll, Johannes
, Köster, Stefan
, Diller, Gerhard Paul
, Miera, Oliver
, Böning, Andreas
, Liebaug, Uta
, Hess, Steffen
, Breuer, Johannes
, Scheewe, Jens
, Seitz, Uwe
, Haverkämper, Guido
, Westhoff-Bleck, Mechthild
, Bauer, Ulrike M M
, Cesnjevar, Robert
, Trusen, Burkhard
, Schoetzau, Jörg
, Heilmann, Antje
, Potthoff, Ludger
, Karstedt, Jens
, Orwat, Stefan
, Koch, Heike
, Feil, Elmo
, Tarusinov, Gleb
, Zink, Stefan
, Weiss, Katja
, Bahlmann, Jens
, Franzbach, Birgit
, Eberhard, Michael
, Streble, Joachim
, Bahle, Roswitha
, Stiller, Brigitte
, Streichan, Frank
, Boeckel, Thomas
, Schäfers, Hans-Joachim
, Mayatepek, Ertan
, Neudorf, Ulrich
, Willmann, Olaf
, Hauser, Michael
, Scheid, Michael
, Freund, Matthias W.
, Böthig, Dietmar
, R
in
advanced cardiac imaging
/ Algorithms
/ Cardiac arrhythmia
/ cardiac magnetic resonance (CMR) imaging
/ Cardiology
/ Cardiovascular disease
/ Congenital diseases
/ Congenital heart disease
/ Datasets
/ Deep learning
/ Ejection fraction
/ Heart
/ Medical prognosis
/ Patients
/ Software
/ tetralogy of Fallot
2020
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Prediction of prognosis in patients with tetralogy of Fallot based on deep learning imaging analysis
by
Singer, Helmut
, Boysen, Arnulf
, Bethge, Martin
, Kehl, Hans-Gerd
, Handke, Ronald-Peter
, Schlensak, Christian
, Sigler, Matthias
, Magsaam, Annette
, Hebe, Joachim
, Sieverding, Ludger
, Photiadis, Joachim
, Nekarda, Torsten
, Brosi, Wolfgang
, Niehues, Tim
, Reichert, Hagen
, Wilken, Martin
, Darrelmann, Christine
, Menke, Thomas
, Haas, Nikolaus A.
, Kleideiter, Ulrich
, Karck, Matthias
, Baier, Georg
, Peters, Björn
, Akintürk, Hakan
, Kroll, Johannes
, Köster, Stefan
, Diller, Gerhard Paul
, Miera, Oliver
, Böning, Andreas
, Liebaug, Uta
, Hess, Steffen
, Breuer, Johannes
, Scheewe, Jens
, Seitz, Uwe
, Haverkämper, Guido
, Westhoff-Bleck, Mechthild
, Bauer, Ulrike M M
, Cesnjevar, Robert
, Trusen, Burkhard
, Schoetzau, Jörg
, Heilmann, Antje
, Potthoff, Ludger
, Karstedt, Jens
, Orwat, Stefan
, Koch, Heike
, Feil, Elmo
, Tarusinov, Gleb
, Zink, Stefan
, Weiss, Katja
, Bahlmann, Jens
, Franzbach, Birgit
, Eberhard, Michael
, Streble, Joachim
, Bahle, Roswitha
, Stiller, Brigitte
, Streichan, Frank
, Boeckel, Thomas
, Schäfers, Hans-Joachim
, Mayatepek, Ertan
, Neudorf, Ulrich
, Willmann, Olaf
, Hauser, Michael
, Scheid, Michael
, Freund, Matthias W.
, Böthig, Dietmar
, R
in
advanced cardiac imaging
/ Algorithms
/ Cardiac arrhythmia
/ cardiac magnetic resonance (CMR) imaging
/ Cardiology
/ Cardiovascular disease
/ Congenital diseases
/ Congenital heart disease
/ Datasets
/ Deep learning
/ Ejection fraction
/ Heart
/ Medical prognosis
/ Patients
/ Software
/ tetralogy of Fallot
2020
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Prediction of prognosis in patients with tetralogy of Fallot based on deep learning imaging analysis
Journal Article
Prediction of prognosis in patients with tetralogy of Fallot based on deep learning imaging analysis
2020
Request Book From Autostore
and Choose the Collection Method
Overview
ObjectiveTo assess the utility of machine learning algorithms for automatically estimating prognosis in patients with repaired tetralogy of Fallot (ToF) using cardiac magnetic resonance (CMR).MethodsWe included 372 patients with ToF who had undergone CMR imaging as part of a nationwide prospective study. Cine loops were retrieved and subjected to automatic deep learning (DL)-based image analysis, trained on independent, local CMR data, to derive measures of cardiac dimensions and function. This information was combined with established clinical parameters and ECG markers of prognosis.ResultsOver a median follow-up period of 10 years, 23 patients experienced an endpoint of death/aborted cardiac arrest or documented ventricular tachycardia (defined as >3 documented consecutive ventricular beats). On univariate Cox analysis, various DL parameters, including right atrial median area (HR 1.11/cm², p=0.003) and right ventricular long-axis strain (HR 0.80/%, p=0.009) emerged as significant predictors of outcome. DL parameters were related to adverse outcome independently of left and right ventricular ejection fraction and peak oxygen uptake (p<0.05 for all). A composite score of enlarged right atrial area and depressed right ventricular longitudinal function identified a ToF subgroup at significantly increased risk of adverse outcome (HR 2.1/unit, p=0.007).ConclusionsWe present data on the utility of machine learning algorithms trained on external imaging datasets to automatically estimate prognosis in patients with ToF. Due to the automated analysis process these two-dimensional-based algorithms may serve as surrogates for labour-intensive manually attained imaging parameters in patients with ToF.
Publisher
BMJ Publishing Group Ltd and British Cardiovascular Society,BMJ Publishing Group LTD
Subject
This website uses cookies to ensure you get the best experience on our website.