MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Expanding the adipokine network in cartilage: identification and regulation of novel factors in human and murine chondrocytes
Expanding the adipokine network in cartilage: identification and regulation of novel factors in human and murine chondrocytes
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Expanding the adipokine network in cartilage: identification and regulation of novel factors in human and murine chondrocytes
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Expanding the adipokine network in cartilage: identification and regulation of novel factors in human and murine chondrocytes
Expanding the adipokine network in cartilage: identification and regulation of novel factors in human and murine chondrocytes

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Expanding the adipokine network in cartilage: identification and regulation of novel factors in human and murine chondrocytes
Expanding the adipokine network in cartilage: identification and regulation of novel factors in human and murine chondrocytes
Journal Article

Expanding the adipokine network in cartilage: identification and regulation of novel factors in human and murine chondrocytes

2011
Request Book From Autostore and Choose the Collection Method
Overview
Background Obesity is a major risk factor for a plethora of diseases including joint disorders associated with cartilage destruction. Recently, it has been demonstrated that adipose tissue might contribute to degenerative joint diseases via the secretion of potent bioactive molecules termed adipokines. Objective To study expression of the novel adipokines chemerin, lipocalin 2 (LCN2) and serum amyloid A3 (SAA3) in murine and human chondrocytes, under basal conditions, in response to a range of biological and pharmacological treatments, and during chondrocyte differentiation. Methods Chemerin, LCN2 and SAA3 mRNA and protein expression were evaluated by quantitative real-time reverse transcription PCR and western blot analysis, respectively, in the ATDC-5 murine chondrocyte cell line, a human immortalised chondrocyte cell line (T/C-28a2) and primary cultured human chondrocytes. Results Human and murine chondrocytes expressed chemerin, LCN2 and SAA3 mRNA; interleukin (IL)-1β was a potent inducer of these novel adipokines. Moreover, dexamethasone, lipopolysaccharides (LPS) and other relevant adipokines such as leptin and adiponectin were able to modulate chemerin, LCN2 and SAA3 mRNA expression alone and when coadministered. Intracellular signal transducers involved in the IL-1β-mediated upregulation of LCN2 and SAA3 included Janus kinase (JAK) 2, phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein (MAP) kinases. Finally, expression of chemerin, LCN2 and SAA3 mRNA expression were modulated throughout chondrocyte differentiation. Conclusion Chemerin, LCN2 and SAA3 are implicated in chondrocyte pathophysiology, and regulated by other relevant factors that drive inflammatory process such as IL-1β, LPS and adipokines including leptin and adiponectin. It seems likely that JAK2, PI3K and MAP kinases are involved in mediating these responses.