MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Pilot Study on Multilingual Detection of Irregular Migration Discourse on X and Telegram Using Transformer-Based Models
A Pilot Study on Multilingual Detection of Irregular Migration Discourse on X and Telegram Using Transformer-Based Models
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Pilot Study on Multilingual Detection of Irregular Migration Discourse on X and Telegram Using Transformer-Based Models
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Pilot Study on Multilingual Detection of Irregular Migration Discourse on X and Telegram Using Transformer-Based Models
A Pilot Study on Multilingual Detection of Irregular Migration Discourse on X and Telegram Using Transformer-Based Models

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Pilot Study on Multilingual Detection of Irregular Migration Discourse on X and Telegram Using Transformer-Based Models
A Pilot Study on Multilingual Detection of Irregular Migration Discourse on X and Telegram Using Transformer-Based Models
Journal Article

A Pilot Study on Multilingual Detection of Irregular Migration Discourse on X and Telegram Using Transformer-Based Models

2026
Request Book From Autostore and Choose the Collection Method
Overview
The rise of Online Social Networks has reshaped global discourse, enabling real-time conversations on complex issues such as irregular migration. Yet the informal, multilingual, and often noisy nature of content on platforms like X (formerly Twitter) and Telegram presents significant challenges for reliable automated analysis. This study presents an exploratory multilingual natural language processing (NLP) framework for detecting irregular migration discourse across five languages. Conceived as a pilot study addressing extreme data scarcity in sensitive migration contexts, this work evaluates transformer-based models on a curated multilingual corpus. It provides an initial baseline for monitoring informal migration narratives on X and Telegram. We evaluate a broad range of approaches, including traditional machine learning classifiers, SetFit sentence-embedding models, fine-tuned multilingual BERT (mBERT) transformers, and a Large Language Model (GPT-4o). The results show that GPT-4o achieves the highest performance overall (F1-score: 0.84), with scores reaching 0.89 in French and 0.88 in Greek. While mBERT excels in English, SetFit outperforms mBERT in low-resource settings, specifically in Arabic (0.79 vs. 0.70) and Greek (0.88 vs. 0.81). The findings highlight the effectiveness of transformer-based and large-language-model approaches, particularly in low-resource or linguistically heterogeneous environments. Overall, the proposed framework provides an initial, compact benchmark for multilingual detection of irregular migration discourse under extreme, low-resource conditions. The results should be viewed as exploratory indicators of model behavior on this synthetic, small-scale corpus, not as statistically generalizable evidence or deployment-ready tools. In this context, “multilingual” refers to robustness across different linguistic realizations of identical migration narratives under translation, rather than coverage of organically diverse multilingual public discourse.