MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Semantic-Associated Factor Graph Model for LiDAR-Assisted Indoor Multipath Localization
A Semantic-Associated Factor Graph Model for LiDAR-Assisted Indoor Multipath Localization
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Semantic-Associated Factor Graph Model for LiDAR-Assisted Indoor Multipath Localization
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Semantic-Associated Factor Graph Model for LiDAR-Assisted Indoor Multipath Localization
A Semantic-Associated Factor Graph Model for LiDAR-Assisted Indoor Multipath Localization

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Semantic-Associated Factor Graph Model for LiDAR-Assisted Indoor Multipath Localization
A Semantic-Associated Factor Graph Model for LiDAR-Assisted Indoor Multipath Localization
Journal Article

A Semantic-Associated Factor Graph Model for LiDAR-Assisted Indoor Multipath Localization

2026
Request Book From Autostore and Choose the Collection Method
Overview
In indoor environments where Global Navigation Satellite System (GNSS) signals are entirely blocked, wireless signals such as 5G and Ultra-Wideband (UWB) have become primary means for high-precision positioning. However, complex indoor structures lead to significant multipath effects, which severely constrain the improvement of positioning accuracy. Existing indoor positioning methods rarely link environmental semantic information (e.g., wall, column) to multipath error estimation, leading to inaccurate multipath correction—especially in complex scenes with multiple reflective objects. To address this issue, this paper proposes a LiDAR-assisted multipath estimation and positioning method. This method constructs a tightly coupled perception-positioning framework: first, a semantic-feature-based neural network for reflective surface detection is designed to accurately extract the geometric parameters of potential reflectors from LiDAR point clouds; subsequently, a unified factor graph model is established to multidimensionally associate and jointly infer terminal states, virtual anchor (VA) states, wireless signal measurements, and LiDAR-perceived reflector information, enabling dynamic discrimination and utilization of both line-of-sight (LOS) and non-line-of-sight (NLOS) paths. Experimental results demonstrate that the root mean square error (RMSE) of the proposed method is improved by 32.1% compared to traditional multipath compensation approaches. This research provides an effective solution for high-precision and robust positioning in complex indoor environments.