Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
In-Plane Longitudinal Cutting in Single-Crystal Silicon Wafer Surface Micromachining
by
delos Reyes, Ronald Allan S.
in
Micromachining
/ Silicon wafers
/ Single crystals
2017
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
In-Plane Longitudinal Cutting in Single-Crystal Silicon Wafer Surface Micromachining
by
delos Reyes, Ronald Allan S.
in
Micromachining
/ Silicon wafers
/ Single crystals
2017
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
In-Plane Longitudinal Cutting in Single-Crystal Silicon Wafer Surface Micromachining
Journal Article
In-Plane Longitudinal Cutting in Single-Crystal Silicon Wafer Surface Micromachining
2017
Request Book From Autostore
and Choose the Collection Method
Overview
The current concept of grinding or abrasive machining involves the formation and removal of segmented strips of material termed chips from the surface of the solid. A novel cutting mechanism is hereby presented in this research study that suggests that the generation of chips from the surface does not occur but only a shearing process that splits material creating added surface features and textures in the silicon surface. This arises from the unique set of factors of abrasive grit size, thrust force, polishing speed, and polishing time that lead to phase transformations in the surface layers of the silicon wafers. Statistical analysis of the factor effects yielded results that show the surface roughness values, Ra and Rz, increasing without any appreciable change in the thickness of the silicon wafers. This can be attributed to the proposed cutting mechanism indicating that only in-plane surface shearing occurred due to the change of the silicon crystal structure from exhibiting brittle behavior to that of ductile mode of deformation. Moreover, experimental quantities of the specific energy for surface machining of silicon was calculated with an overall mean of 50.5 GPa. This is about 33% less than the currently accepted value and can be considered further evidence that polymorphic transitions to a softer material occurred rendering the surface layers more susceptible to longitudinal cutting deformation and fracture. A model based on the inverted spherical cap or spherical bottom geometry for the individual abrasive particle is also proposed, verified by a finite element method analysis simulation, that can mathematically describe this particular micromachining process.
Publisher
Trans Tech Publications Ltd
Subject
MBRLCatalogueRelatedBooks
Related Items
Related Items
This website uses cookies to ensure you get the best experience on our website.