MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Targeted degradation of MK2 is insufficient to block inflammatory cytokine production in human cells due to cooperativity with MK3 and MK5
Targeted degradation of MK2 is insufficient to block inflammatory cytokine production in human cells due to cooperativity with MK3 and MK5
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Targeted degradation of MK2 is insufficient to block inflammatory cytokine production in human cells due to cooperativity with MK3 and MK5
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Targeted degradation of MK2 is insufficient to block inflammatory cytokine production in human cells due to cooperativity with MK3 and MK5
Targeted degradation of MK2 is insufficient to block inflammatory cytokine production in human cells due to cooperativity with MK3 and MK5

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Targeted degradation of MK2 is insufficient to block inflammatory cytokine production in human cells due to cooperativity with MK3 and MK5
Targeted degradation of MK2 is insufficient to block inflammatory cytokine production in human cells due to cooperativity with MK3 and MK5
Journal Article

Targeted degradation of MK2 is insufficient to block inflammatory cytokine production in human cells due to cooperativity with MK3 and MK5

2026
Request Book From Autostore and Choose the Collection Method
Overview
Multiple p38 MAP kinase inhibitors have been developed for the treatment of inflammatory diseases such as rheumatoid arthritis, but their effectiveness has been limited due to toxicity and tachyphylaxis, leading to a lack of clinical benefit. Efforts have been made to circumvent this limitation by targeting individual substrates downstream of p38, including MK2 and MK5. This approach has failed to yield clinical benefit despite preclinical evidence of a therapeutic effect. We hypothesized that there is redundancy in the MAPK activating kinase family that would necessitate blocking multiple kinases to sufficiently impact inflammatory processes. We used heterobifunctional protein degraders that either specifically degraded MK2 selectively or degraded MK2/3/5 simultaneously to test the hypothesis, in addition to genetic approaches to enable knockdown. In human PBMCs, elimination of MK2/3/5 with heterobifunctional degraders resulted in full reduction of TLR4 or TLR7/8 induced TNFα, whereas MK2-specific degradation only attenuated TNFα biosynthesis. In contrast, both specific MK2 degradation and broad MK2/3/5 degradation inhibited TGF-β-induced collagen production in human fibroblasts. This observation was consistent with genetic deletions of MK2, MK3 and MK5 (singly and in combination) whereby single deletion of MK2, MK3 or MK5 attenuated lipopolysaccharide (LPS) induced TNFα production and had no effect on R848-induced TNFα production. Double deletion of MK2 and MK3 or MK2 and MK5 or MK2/3/5 triple deletion had a significantly greater effect on TNFα production regardless of stimulus. The combined data suggest cooperativity between MK2 and either MK3 or MK5 for efficient, cell context-dependent modulation of inflammatory responses.