MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Independent sampling for Bayesian normal conditional autoregressive models with OpenCL acceleration
Independent sampling for Bayesian normal conditional autoregressive models with OpenCL acceleration
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Independent sampling for Bayesian normal conditional autoregressive models with OpenCL acceleration
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Independent sampling for Bayesian normal conditional autoregressive models with OpenCL acceleration
Independent sampling for Bayesian normal conditional autoregressive models with OpenCL acceleration

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Independent sampling for Bayesian normal conditional autoregressive models with OpenCL acceleration
Independent sampling for Bayesian normal conditional autoregressive models with OpenCL acceleration
Journal Article

Independent sampling for Bayesian normal conditional autoregressive models with OpenCL acceleration

2018
Request Book From Autostore and Choose the Collection Method
Overview
A new computational strategy produces independent samples from the joint posterior distribution for a broad class of Bayesian spatial and spatiotemporal conditional autoregressive models. The method is based on reparameterization and marginalization of the posterior distribution and massive parallelization of rejection sampling using graphical processing units (GPUs) or other accelerators. It enables very fast sampling for small to moderate-sized datasets (up to approximately 10,000 observations) and feasible sampling for much larger datasets. Even using a mid-range GPU and a high-end CPU, the GPU-based implementation is up to 30 times faster than the same algorithm run serially on a single CPU, and the numbers of effective samples per second are orders of magnitude higher than those obtained with popular Markov chain Monte Carlo software. The method has been implemented in the R package CARrampsOcl. This work provides both a practical computing strategy for fitting a popular class of Bayesian models and a proof of concept that GPU acceleration can make independent sampling from Bayesian joint posterior densities feasible.