MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Application of Machine Learning Techniques for Multi Objective Optimization of Response Variables in Wire Cut Electro Discharge Machining Operation
Application of Machine Learning Techniques for Multi Objective Optimization of Response Variables in Wire Cut Electro Discharge Machining Operation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Application of Machine Learning Techniques for Multi Objective Optimization of Response Variables in Wire Cut Electro Discharge Machining Operation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Application of Machine Learning Techniques for Multi Objective Optimization of Response Variables in Wire Cut Electro Discharge Machining Operation
Application of Machine Learning Techniques for Multi Objective Optimization of Response Variables in Wire Cut Electro Discharge Machining Operation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Application of Machine Learning Techniques for Multi Objective Optimization of Response Variables in Wire Cut Electro Discharge Machining Operation
Application of Machine Learning Techniques for Multi Objective Optimization of Response Variables in Wire Cut Electro Discharge Machining Operation
Journal Article

Application of Machine Learning Techniques for Multi Objective Optimization of Response Variables in Wire Cut Electro Discharge Machining Operation

2019
Request Book From Autostore and Choose the Collection Method
Overview
Wire Cut Electrical Discharge Machining (WEDM) is a non-conventional thermal machining process which is capable of accurately machine alloys having high hardness or part having complex shapes that are very difficult to be machined by the conventional machining processes. The WEDM finds applications in automobiles, aero–space, medical instruments, tool and die industries, etc. The input parameters considered for WEDM are pulse on time, pulse off time, flushing pressure, servo voltage, wire feed rate and wire tension. Performance of WEDM is mainly assessed by output variables such as, material removal rate (MRR), kerf width (Kw) and surface roughness (Ra) of the work piece being machined. Looking at the need of a suitable optimization model, the present work explores the feasibility of machine learning concepts to predict optimum surface roughness and kerf width simultaneously by making use of experimental data available in the literature for machining of Hastelloy C– 276 using WEDM. In most of the literatures, single objective optimization has been carried out for predicting optimum cutting parameters for WEDM. Hence, the present work presents a methodology that makes use of a machine learning algorithm namely, gradient descent method as an optimization technique to optimize both surface roughness and kerf width simultaneously (multi objective optimization) and compare the results with the existing literatures. It was observed that the input parameters such as pulse on time, pulse off time, and peak current have significant effect on both surface roughness and kerf width. The gradient descent method was successfully used for predicting the optimum values of response variables.