MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A machine learning approach for classifying bird and insect radar echoes with S-band Polarimetric Weather Radar
A machine learning approach for classifying bird and insect radar echoes with S-band Polarimetric Weather Radar
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A machine learning approach for classifying bird and insect radar echoes with S-band Polarimetric Weather Radar
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A machine learning approach for classifying bird and insect radar echoes with S-band Polarimetric Weather Radar
A machine learning approach for classifying bird and insect radar echoes with S-band Polarimetric Weather Radar

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A machine learning approach for classifying bird and insect radar echoes with S-band Polarimetric Weather Radar
A machine learning approach for classifying bird and insect radar echoes with S-band Polarimetric Weather Radar
Journal Article

A machine learning approach for classifying bird and insect radar echoes with S-band Polarimetric Weather Radar

2021
Request Book From Autostore and Choose the Collection Method
Overview
The S-bandWSR-88D weather radar is sensitive enough to observe biological scatterers like birds and insects. However, their non-spherical shapes and frequent collocation in the radar resolution volume create challenges in identifying their echoes. We propose a method of extracting bird (or insect) features by coherently averaging dual polarization measurements from multiple radar scans, containing bird (insect) migration. Additional features are also computed to capture aspect and range dependence, and the variation of these echoes over local regions. Next, ridge classifier and decision tree machine learning algorithms are trained, first only with the averaged dual pol inputs and then different combinations of the remaining features are added. The performance of all models for both methods, are analyzed using metrics computed from the test data. Further studies on different patterns of birds/insects, including roosting birds, bird migration and insect migration cases, are used to further investigate the generality of our models. Overall, the ridge classifier using only dual polarization variables was found to perform consistently well across all these tests. Our recommendation is that this classifier can be used operationally on the US Next-Generation Radars (NEXRAD), as a first step in classifying biological echoes. It would be used in conjunction with the existing Hydrometeor Classification Algorithm (HCA), where the HCA would first separate biological from non-biological echoes, then our algorithm would be applied to further separate biological echoes into birds and insects. To the best of our knowledge, this study is the first to train a machine learning classifier that is capable of detecting diverse patterns of bird and insect echoes, based on dual polarization variables at each range gate.