MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Effects of dissolved solute on unsteady double-diffusive mixed convective flow of a Buongiorno’s two-component nonhomogeneous nanofluid
Effects of dissolved solute on unsteady double-diffusive mixed convective flow of a Buongiorno’s two-component nonhomogeneous nanofluid
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Effects of dissolved solute on unsteady double-diffusive mixed convective flow of a Buongiorno’s two-component nonhomogeneous nanofluid
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Effects of dissolved solute on unsteady double-diffusive mixed convective flow of a Buongiorno’s two-component nonhomogeneous nanofluid
Effects of dissolved solute on unsteady double-diffusive mixed convective flow of a Buongiorno’s two-component nonhomogeneous nanofluid

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Effects of dissolved solute on unsteady double-diffusive mixed convective flow of a Buongiorno’s two-component nonhomogeneous nanofluid
Effects of dissolved solute on unsteady double-diffusive mixed convective flow of a Buongiorno’s two-component nonhomogeneous nanofluid
Journal Article

Effects of dissolved solute on unsteady double-diffusive mixed convective flow of a Buongiorno’s two-component nonhomogeneous nanofluid

2019
Request Book From Autostore and Choose the Collection Method
Overview
Purpose The purpose of this paper is to numerically study the unsteady double-diffusive mixed convective stagnation-point flow of a water-based nanofluid accompanied with one salt past a vertical flat plate. The effects of Brownian motion and thermophoresis parameters are also introduced through Buongiorno’s two-component nonhomogeneous equilibrium model in the governing equations. Design/methodology/approach In the present explanation of double-diffusive mixed convective model, there are four boundary layers entitled: velocity, thermal, solutal concentration and nanoparticle concentration. The resulting basic equations are solved numerically via an efficient Runge–Kutta fourth-order method with shooting technique after the governing nonlinear partial differential equations are converted into a system of nonlinear ordinary differential equations by the use of similarity transformations. Findings To avail the physical insight of problem, the effects of the mixed convection parameter, unsteadiness parameter and salt/nanoparticle parameters on the boundary layers behavior are investigated. Moreover, four possible types of diffusion problems entitled: double-diffusive nanofluid (DDNF), double-diffusive regular fluid (DDRF), mono-diffusive nanofluid (MDNF) and mono-diffusive regular fluid (MDRF) are considered to analyze and compare them in concepts of heat and mass transfer. Originality/value The results demonstrate that, for a regular fluid, without nanoparticle and salt (MDRF), the dimensionless heat transfer rate is smaller than other diffusion cases. As we include nanoparticle and salt (DDNF), the rate of heat transfer increases due to an increase in thermal conductivity and rate of diffusion of salt. Moreover, it is observed that the highest heat transfer rate is obtained for the situation that the thermophoretic effect of nanoparticles is negligible. Besides, the heat transfer rate enhances with the increase in the regular double-diffusive buoyancy parameter of salt.