MbrlCatalogueTitleDetail

Do you wish to reserve the book?
An Industrial Intrusion Detection Method Based on Hybrid Convolutional Neural Networks with Improved TCN
An Industrial Intrusion Detection Method Based on Hybrid Convolutional Neural Networks with Improved TCN
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
An Industrial Intrusion Detection Method Based on Hybrid Convolutional Neural Networks with Improved TCN
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
An Industrial Intrusion Detection Method Based on Hybrid Convolutional Neural Networks with Improved TCN
An Industrial Intrusion Detection Method Based on Hybrid Convolutional Neural Networks with Improved TCN

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
An Industrial Intrusion Detection Method Based on Hybrid Convolutional Neural Networks with Improved TCN
An Industrial Intrusion Detection Method Based on Hybrid Convolutional Neural Networks with Improved TCN
Journal Article

An Industrial Intrusion Detection Method Based on Hybrid Convolutional Neural Networks with Improved TCN

2024
Request Book From Autostore and Choose the Collection Method
Overview
Network intrusion detection systems (NIDS) based on deep learning have continued to make significant advances. However, the following challenges remain: on the one hand, simply applying only Temporal Convolutional Networks (TCNs) can lead to models that ignore the impact of network traffic features at different scales on the detection performance. On the other hand, some intrusion detection methods consider multi-scale information of traffic data, but considering only forward network traffic information can lead to deficiencies in capturing multi-scale temporal features. To address both of these issues, we propose a hybrid Convolutional Neural Network that supports a multi-output strategy (BONUS) for industrial internet intrusion detection. First, we create a multiscale Temporal Convolutional Network by stacking TCN of different scales to capture the multiscale information of network traffic. Meanwhile, we propose a bi-directional structure and dynamically set the weights to fuse the forward and backward contextual information of network traffic at each scale to enhance the model’s performance in capturing the multi-scale temporal features of network traffic. In addition, we introduce a gated network for each of the two branches in the proposed method to assist the model in learning the feature representation of each branch. Extensive experiments reveal the effectiveness of the proposed approach on two publicly available traffic intrusion detection datasets named UNSW-NB15 and NSL-KDD with F1 score of 85.03% and 99.31%, respectively, which also validates the effectiveness of enhancing the model’s ability to capture multi-scale temporal features of traffic data on detection performance.