MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Regulations of Thermal Expansion Coefficients of Yb1−xAlxTaO4 for Environmental Barrier Coatings Applications
Regulations of Thermal Expansion Coefficients of Yb1−xAlxTaO4 for Environmental Barrier Coatings Applications
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Regulations of Thermal Expansion Coefficients of Yb1−xAlxTaO4 for Environmental Barrier Coatings Applications
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Regulations of Thermal Expansion Coefficients of Yb1−xAlxTaO4 for Environmental Barrier Coatings Applications
Regulations of Thermal Expansion Coefficients of Yb1−xAlxTaO4 for Environmental Barrier Coatings Applications

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Regulations of Thermal Expansion Coefficients of Yb1−xAlxTaO4 for Environmental Barrier Coatings Applications
Regulations of Thermal Expansion Coefficients of Yb1−xAlxTaO4 for Environmental Barrier Coatings Applications
Journal Article

Regulations of Thermal Expansion Coefficients of Yb1−xAlxTaO4 for Environmental Barrier Coatings Applications

2024
Request Book From Autostore and Choose the Collection Method
Overview
Environmental barrier coatings (EBCs) are widely used to protect ceramic matrix composites (CMCs, SiCf/SiC, and Al2O3f/Al2O3), and they should have low thermal expansion coefficients (TECs) matching the CMCs and excellent mechanical properties to prolong their lifetime. Current EBC materials have disadvantages of phase transitions and insufficient mechanical properties, which affect their working temperatures and lifetime. It is necessary to develop new oxide EBCs. Ytterbium tantalate (YbTaO4) is a stable and novel EBC material, and we have improved the mechanical properties and TECs of Yb1−xAlxTaO4 (x = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5) ceramics by replacing Yb with Al. XRD, SEM, and EDS are used to verify the crystal and microstructures, and nano-indentation is used to measure the modulus and hardness when changes in TECs are measured within a thermal expansion device. The results show that the phase structure of Yb1−xAlxTaO4 (x = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5) is stable at 25–1400 °C within air atmosphere, and their high-temperature TECs (6.4–8.9 × 10−6 K−1, 1400 °C) are effectively regulated by introductions of different contents of Al, which enlarge their engineering applications for SiCf/SiC and Al2O3f/Al2O3 CMCs. The evolutions of TECs are analyzed from structural characteristics and phase compositions, and the increased TECs make Yb1−xAlxTaO4 potential EBCs for Al2O3 matrixes. Due to the high bonding strength of Al–O bonds, hardness, as well as Young’s modulus, are enhanced with the increasing Al content, with Yb1−xAlxTaO4 (x = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5) having a nano-hardness of 3.7–12.8 GPa and a Young’s modulus of 100.9–236.6 GPa. The TECs of YbTaO4 are successfully regulated to expand their applications, and they match those of Al2O3 and SiC matrixes, as well as displaying improved mechanical properties. This work promotes applications of YbTaO4 as potential EBCs and provides a new way to regulate the TECs of tantalates.