MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Highest recorded electrical conductivity and microstructure in polypropylene–carbon nanotubes composites and the effect of carbon nanofibers addition
Highest recorded electrical conductivity and microstructure in polypropylene–carbon nanotubes composites and the effect of carbon nanofibers addition
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Highest recorded electrical conductivity and microstructure in polypropylene–carbon nanotubes composites and the effect of carbon nanofibers addition
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Highest recorded electrical conductivity and microstructure in polypropylene–carbon nanotubes composites and the effect of carbon nanofibers addition
Highest recorded electrical conductivity and microstructure in polypropylene–carbon nanotubes composites and the effect of carbon nanofibers addition

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Highest recorded electrical conductivity and microstructure in polypropylene–carbon nanotubes composites and the effect of carbon nanofibers addition
Highest recorded electrical conductivity and microstructure in polypropylene–carbon nanotubes composites and the effect of carbon nanofibers addition
Journal Article

Highest recorded electrical conductivity and microstructure in polypropylene–carbon nanotubes composites and the effect of carbon nanofibers addition

2018
Request Book From Autostore and Choose the Collection Method
Overview
In the last decade, numerous investigations have been devoted to the preparation of polypropylene–multiwalled carbon nanotubes (PP/MWCNT) nanocomposites having enhanced properties, and in particular, high electrical conductivities (> 1 S cm−1). The present work establishes that the highest electrical conductivity in PP/MWCNT nanocomposites is limited by the amount of nanofiller content which can be incorporated in the polymer matrix, namely, about 20 wt%. This concentration of MWCNT in PP leads to a maximum electrical conductivity slightly lower than 8 S cm−1, but only by assuring an adequate combination of dispersion and spatial distribution of the carbon nanotubes. The realization of such an optimal microstructure depends on the characteristics of the production process of the PP/MWCNT nanocomposites; in our experiments, involving composite fabrication by melt mixing and hot pressing, a second re-processing cycle is shown to increase the electrical conductivity values by up to two orders of magnitude, depending on the MWCNT content of the nanocomposite. A modest increase of the highest electrical conductivity obtained in nanocomposites with 21.5 wt% MWCNT content has been produced by the combined use of carbon nanofibers (CNF) and MWCNT, so that the total nanofiller content was increased to 30 wt% in the nanocomposite with PP—15 wt% MWCNT—15 wt%CNF.