MbrlCatalogueTitleDetail

Do you wish to reserve the book?
One-pot synthesis of PDDA-mediated CuO-functionalized activated carbon fabric for sarin detoxification with enhanced strength and permeability for NBC protective clothing
One-pot synthesis of PDDA-mediated CuO-functionalized activated carbon fabric for sarin detoxification with enhanced strength and permeability for NBC protective clothing
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
One-pot synthesis of PDDA-mediated CuO-functionalized activated carbon fabric for sarin detoxification with enhanced strength and permeability for NBC protective clothing
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
One-pot synthesis of PDDA-mediated CuO-functionalized activated carbon fabric for sarin detoxification with enhanced strength and permeability for NBC protective clothing
One-pot synthesis of PDDA-mediated CuO-functionalized activated carbon fabric for sarin detoxification with enhanced strength and permeability for NBC protective clothing

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
One-pot synthesis of PDDA-mediated CuO-functionalized activated carbon fabric for sarin detoxification with enhanced strength and permeability for NBC protective clothing
One-pot synthesis of PDDA-mediated CuO-functionalized activated carbon fabric for sarin detoxification with enhanced strength and permeability for NBC protective clothing
Journal Article

One-pot synthesis of PDDA-mediated CuO-functionalized activated carbon fabric for sarin detoxification with enhanced strength and permeability for NBC protective clothing

2025
Request Book From Autostore and Choose the Collection Method
Overview
Chemical warfare agents (CWAs) are extremely lethal substances used in warfare and terrorism, capable of causing permanent damage even in small doses, despite medical intervention. Therefore, detection, protection, and detoxification of CWAs are vital for the safety of first responders, military personnel, and civilians, driving significant research in this area. Herein, we designed and synthesized a poly(diallyldimethylammonium chloride) (PDDA) mediated cupric oxide (CuO) functionalized activated carbon fabric (ACF), termed ACF@PDDA-CuO, as an adsorbent filter material for self-detoxifying chemical protective clothing. PDDA, a positively charged polyelectrolyte, effectively binds in-situ synthesized CuO to the negatively charged ACF surface, serving as a suitable binder. This study demonstrates the synergistic effects of PDDA-CuO functionalization on ACF, where PDDA treatment enhanced mechanical and comfort properties, and CuO crystal growth significantly improved detoxification efficacy against the CWA Nerve Agent Sarin. Comprehensive analyses, including FTIR, BET surface area analysis, SEM, EDS, TEM, STEM, TGA, XPS, and XRD, confirmed the uniform deposition of CuO and PDDA on the ACF surface. The Cu content on ACF@PDDA-CuO samples was measured via iodometric titration. The materials were evaluated for tensile strength, air permeability, water vapor permeability, nerve agent (Sarin) detoxification, and blister agent (Sulfur Mustard) breakthrough time to assess their applicability for protective clothing. The optimized PDDA-CuO on ACF detoxified 82.04% of Sarin within 18 h, compared to 25.22% by ACF alone, and enhanced tensile strength by 23.67%, air permeability by 24.63%, and water vapor permeability by 3.94%, while maintaining protection against Sulfur Mustard for 24 h. These findings indicate that ACF@PDDA-CuO is a promising candidate for CWA protective clothing, offering robust protection with enhanced comfort. [Display omitted]

MBRLCatalogueRelatedBooks