MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Stability of Regime-Switching Jump Diffusions
Stability of Regime-Switching Jump Diffusions
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Stability of Regime-Switching Jump Diffusions
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Stability of Regime-Switching Jump Diffusions
Stability of Regime-Switching Jump Diffusions

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Stability of Regime-Switching Jump Diffusions
Stability of Regime-Switching Jump Diffusions
Journal Article

Stability of Regime-Switching Jump Diffusions

2010
Request Book From Autostore and Choose the Collection Method
Overview
This work is concerned with the stability of a class of switching jump-diffusion processes. The processes under consideration can be thought of as a number of jump-diffusion processes modulated by a random switching device. The motivation of our study stems from a wide range of applications in communication systems, flexible manufacturing and production planning, financial engineering, and economics. A distinct feature of the two-component process (X(t),α(t)) considered in this paper is that the switching process α(t) depends on the X(t) process. This paper focuses on the long-time behavior, namely, stability of the switching jump diffusions. First, the definitions of regularity and stability are recalled. Next it is shown that under suitable conditions, the underlying systems are regular or have no finite explosion time. To study stability of the trivial solution (or the equilibrium point 0), systems that are linearizable (in the x variable) in a neighborhood of 0 are considered. Sufficient conditions for stability and instability are obtained. Then, almost sure stability is examined by treating a Lyapunov exponent. The stability conditions present a gap for stability and instability owing to the maximum and minimal eigenvalues associated with the drift and diffusion coefficients. To close the gap, a transformation technique is used to obtain a necessary and sufficient condition for stability. [PUBLICATION ABSTRACT]