MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Adaptive coupled double-pendulum overhead crane control strategy with enhanced attitude suppression under initial input constraints
Adaptive coupled double-pendulum overhead crane control strategy with enhanced attitude suppression under initial input constraints
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Adaptive coupled double-pendulum overhead crane control strategy with enhanced attitude suppression under initial input constraints
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Adaptive coupled double-pendulum overhead crane control strategy with enhanced attitude suppression under initial input constraints
Adaptive coupled double-pendulum overhead crane control strategy with enhanced attitude suppression under initial input constraints

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Adaptive coupled double-pendulum overhead crane control strategy with enhanced attitude suppression under initial input constraints
Adaptive coupled double-pendulum overhead crane control strategy with enhanced attitude suppression under initial input constraints
Journal Article

Adaptive coupled double-pendulum overhead crane control strategy with enhanced attitude suppression under initial input constraints

2024
Request Book From Autostore and Choose the Collection Method
Overview
During the actual transportation process, overhead cranes are always affected by the double-pendulum effect, resulting in excessive swinging angles that affect the control performance of the anti-swing system. Moreover, the viscous resistance, air resistance, and swing angle suppression force encountered during transportation have uncertainties and cannot be accurately fed back to the controller’s input, resulting in poor swing angle suppression capability. In order to suppress the undesired swinging of the hook and load, this paper proposes an adaptive coupling anti-swing control strategy with enhanced swing angle suppression under initial input constraints. Specifically, more system parameters are included in the design of the coupling signal, and a sine term is introduced to adjust the oscillation of the hook and load swing angle. At the same time, a hyperbolic tangent term is introduced to suppress the driving force of the overhead crane to prevent excessive driving force from affecting the control performance. Furthermore, for the problem of uncertain parameters, an adaptive law is used to estimate the uncertain parameters online, ultimately designing an adaptive coupling anti-swing controller with enhanced swing angle suppression under initial input constraints. The asymptotic stability of the equilibrium point of the closed-loop system is proven using the Lyapunov method and LaSalle’s invariance principle. Through extensive experimental simulations, the proposed control strategy demonstrates good control performance.