MbrlCatalogueTitleDetail

Do you wish to reserve the book?
3D skeleton-based human motion prediction using spatial–temporal graph convolutional network
3D skeleton-based human motion prediction using spatial–temporal graph convolutional network
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
3D skeleton-based human motion prediction using spatial–temporal graph convolutional network
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
3D skeleton-based human motion prediction using spatial–temporal graph convolutional network
3D skeleton-based human motion prediction using spatial–temporal graph convolutional network

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
3D skeleton-based human motion prediction using spatial–temporal graph convolutional network
3D skeleton-based human motion prediction using spatial–temporal graph convolutional network
Journal Article

3D skeleton-based human motion prediction using spatial–temporal graph convolutional network

2024
Request Book From Autostore and Choose the Collection Method
Overview
3D human motion prediction; predicting future human poses in the basis of historically observed motion sequences, is a core task in computer vision. Thus far, it has been successfully applied to both autonomous driving and human–robot interaction. Previous research work has usually employed Recurrent Neural Networks (RNNs)-based models to predict future human poses. However, as previous works have amply demonstrated, RNN-based prediction models suffer from unrealistic and discontinuous problems in human motion prediction due to the accumulation of prediction errors. To address this, we propose a feed-forward, 3D skeleton-based model for human motion prediction. This model, the Spatial–Temporal Graph Convolutional Network (ST-GCN) model, automatically learns the spatial and temporal patterns of human motion from input sequences. This model overcomes the limitations of previous research approaches. Specifically, our ST-GCN model is based on an encoder-decoder architecture. The encoder consists of 5 ST-GCN modules, with each ST-GCN module consisting of a spatial GCN layer and a 2D convolution-based TCN layer, which facilitate the encoding of the spatio-temporal dynamics of human motion. Subsequently, the decoder, consisting of 5 TCN layers, exploits the encoded spatio-temporal representation of human motion to predict future human pose. We leveraged the ST-GCN model to perform extensive experiments on various large-scale human activity 3D pose datasets (Human3.6 M, AMASS, 3DPW) while adopting MPJPE (Mean Per Joint Position Error) as the evaluation metric. The experimental results demonstrate that our ST-GCN model outperforms the baseline models in both short-term (< 400 ms) and long-term (> 400 ms) predictions, thus yielding the best prediction results.