MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Natural fibers and reduced graphene oxide-based flexible paper electrode for energy storage applications
Natural fibers and reduced graphene oxide-based flexible paper electrode for energy storage applications
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Natural fibers and reduced graphene oxide-based flexible paper electrode for energy storage applications
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Natural fibers and reduced graphene oxide-based flexible paper electrode for energy storage applications
Natural fibers and reduced graphene oxide-based flexible paper electrode for energy storage applications

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Natural fibers and reduced graphene oxide-based flexible paper electrode for energy storage applications
Natural fibers and reduced graphene oxide-based flexible paper electrode for energy storage applications
Journal Article

Natural fibers and reduced graphene oxide-based flexible paper electrode for energy storage applications

2022
Request Book From Autostore and Choose the Collection Method
Overview
In recent era of modern and bendable technology, energy dearth arises as a paramount subject around the globe with a dire demand of flexible and lightweight energy storage devices. This study targets fabrication of reduced graphene oxide (rGO) and utility of abundantly available, cost effective, and environment friendly lignocelluloses (LC) fibers extracted from Carica papaya source, as a binder to bind active material (rGO) as robust and compact paper sheet. Fabricated samples were analyzed by X-ray diffraction for crystallographic analysis, Scanning electron microscopy, Transmission electron microscope for morphology, Fourier transform infrared spectroscopy for structural bonding, and Raman spectroscopy for vibrational modes. Robust and bendable rGO/LC paper electrode was tested for energy storage application by employing in different characterizations, i.e., cyclic voltammetry for capacitive behavior, galvanostatic charge–discharge for symmetric EDLC, and electrochemical impedance spectroscopy for resistive charge kinetics, respectively. rGO/LC composite sheet employed as working electrode in 3-electrode CV measurements and revealed specific capacitance of 591 F/g at a scan rate of 5 mV/s by keeping the undistorted shape of voltammograms at higher scan rates which present it as a suitable candidate for modern flexible and energy storage devices. rGO/LC-based symmetric cell revealed the highest specific capacitance of 228 F/g at applied current density of 0.1 A/g, the energy density of 6.3 Wh/kg, and power density of 129 W/kg, respectively. rGO/LC-based symmetric cell confirmed the cycling stability by revealing capacitance retention of 82% after 200 cycles. It can conclude that biomass-based rGO paper sheet can be a potential candidate as environmentally safe with remarkable electrochemical activity in energy storage applications.