MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Enhancement of friction stir welding characteristics of alloy AA6061 by design of experiment methodology
Enhancement of friction stir welding characteristics of alloy AA6061 by design of experiment methodology
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Enhancement of friction stir welding characteristics of alloy AA6061 by design of experiment methodology
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Enhancement of friction stir welding characteristics of alloy AA6061 by design of experiment methodology
Enhancement of friction stir welding characteristics of alloy AA6061 by design of experiment methodology

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Enhancement of friction stir welding characteristics of alloy AA6061 by design of experiment methodology
Enhancement of friction stir welding characteristics of alloy AA6061 by design of experiment methodology
Journal Article

Enhancement of friction stir welding characteristics of alloy AA6061 by design of experiment methodology

2023
Request Book From Autostore and Choose the Collection Method
Overview
The advent of material technology witnessed an enormous application of aluminium alloys in day-to-day life. The Aluminum Alloy 6061 is one such alloy that finds immense application in engineering field. However, joining process of such aluminium alloys is difficult task through conventional techniques due to occurrence of high thermal conductivity. Friction stir welding (FSW) turns out to be an innovative welding technique used for joining such alloys and comparatively less hazard. The FSW process required to controlled several working parameters for strengthen the mechanical properties. It becomes very important to optimize these process parameters to obtain a good weld with enhanced mechanical properties. The current article describes the experimental procedure for welding AA6061 alloy at different operating parameters. Taguchi method and regression analysis which is widely acceptable methodology implemented to optimize different FSW parameters using L16 orthogonal array. The present study implemented the ANOVA table to examine the influence of tool geometry, rotational speed and welding speed on tensile strength, percentage elongation and harness respectively. The percent contributions of factors i.e., tool geometry, rotation speed and welding speed to the tensile strength is found to be of 33.4%, 4.69% and 58.39% respectively. It is observed that welding speed (58.39%) plays significant role influencing the tensile strength. Similarly, the percentage contributions of tool geometry, rotation speed and welding speed on percentage elongation is found to be 35.08%, 14.29% and 38.28% respectively. The observation concluded that welding speed is the most influential factor for percentage elongation. In addition, the percent contributions of the tool geometry, rotation speed and welding speed on hardness reported as 50.1%, 19.36% and 20.49% respectively. This concluded that tool geometry is the most effective factor for hardness. The predicted results are validated with experimental data’s depicted a good convergence with optimization techniques for controlled operating parameters.