MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Reliability-constrained transmission expansion planning based on simultaneous forecasting method of loads and renewable generations
Reliability-constrained transmission expansion planning based on simultaneous forecasting method of loads and renewable generations
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Reliability-constrained transmission expansion planning based on simultaneous forecasting method of loads and renewable generations
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Reliability-constrained transmission expansion planning based on simultaneous forecasting method of loads and renewable generations
Reliability-constrained transmission expansion planning based on simultaneous forecasting method of loads and renewable generations

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Reliability-constrained transmission expansion planning based on simultaneous forecasting method of loads and renewable generations
Reliability-constrained transmission expansion planning based on simultaneous forecasting method of loads and renewable generations
Journal Article

Reliability-constrained transmission expansion planning based on simultaneous forecasting method of loads and renewable generations

2025
Request Book From Autostore and Choose the Collection Method
Overview
Due to increased energy consumption in upcoming years, the power system needs to be expanded to meet suitable technical conditions. The primary requirement is to gain accurate information about consumption growth in the planning horizon, which can be obtained via forecast studies. Since renewable sources can grow beside the demand, the accurate prediction should consider simultaneous changes in supply and demand in the future. In this paper, a reliability-constrained transmission expansion planning (RCTEP) is proposed. It simultaneously is based on the load forecasting and renewable sources production, named the net power demand forecasting technique (NPDFT). NPDFT consists of a time series-based logistic method, which forecasts loads at planning years. RES generation forecasting forecasts the following year’s generation by an estimated coefficient. RCTEP minimizes the summation of the planning, operation, and reliability cost so that it is limited to the AC optimal power flow equations, planning constraints, and reliability limitations for N – 1 contingency. Then, the stochastic programming based on the Monte Carlo Simulation and the simultaneous backward approach models the uncertainties of the load, RES power, and availability of network equipment. This problem is solved by the hybrid algorithm of grey wolf optimization and training and learning optimization algorithm to achieve the securable optimal solution with a low standard deviation. Generally, this paper contributes to predicting the net power demand, simultaneous modeling of operation, reliability, and economic indices, besides using hybrid algorithms to solve the defined problem. Finally, this strategy is implemented on the 3-bus, 30-bus, and 118-bus transmission networks in MATLAB software. The numerical results confirm the capabilities of the proposed method in improving network operation and reliability indices. Higher reliability can be found for the network by defining a desirable penalty price. Also, operation indices, such as voltage profile and power loss, increase more than 10% under these conditions.