MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Searching the optimal parameters of a 3D scanner in surface reconstruction of a dental model using central composite design coupled with metaheuristic algorithms
Searching the optimal parameters of a 3D scanner in surface reconstruction of a dental model using central composite design coupled with metaheuristic algorithms
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Searching the optimal parameters of a 3D scanner in surface reconstruction of a dental model using central composite design coupled with metaheuristic algorithms
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Searching the optimal parameters of a 3D scanner in surface reconstruction of a dental model using central composite design coupled with metaheuristic algorithms
Searching the optimal parameters of a 3D scanner in surface reconstruction of a dental model using central composite design coupled with metaheuristic algorithms

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Searching the optimal parameters of a 3D scanner in surface reconstruction of a dental model using central composite design coupled with metaheuristic algorithms
Searching the optimal parameters of a 3D scanner in surface reconstruction of a dental model using central composite design coupled with metaheuristic algorithms
Journal Article

Searching the optimal parameters of a 3D scanner in surface reconstruction of a dental model using central composite design coupled with metaheuristic algorithms

2024
Request Book From Autostore and Choose the Collection Method
Overview
Determining the right process parameters for 3D scanning is crucial for rigorously inspecting reverse-engineered dental models. However, it is seen that various parameters, such as scanning distance, light intensity, and scanning angle, are rarely examined during preliminary experimental trials. The proposed research examines a method for estimating the ideal values of the aforementioned scanning parameters that minimize acquisition error. The face-centered, central composite design suggested twenty runs of experimentation with varying input parameter combinations. In each of these twenty scans, a physical denture model was scanned to extract a 3D CAD model, and the standard deviation of each model was calculated to investigate into the scan accuracy of the recorded data. A neural network architecture is used to train a model across input and output, and then the model is optimized by a genetic algorithm for the best results. Through a scanning distance of 208.28 mm, scanning angle of 54.1 degrees, and light intensity of 18 W/meter square, in a total of twenty trial runs, the lowest possible standard deviation of 0.2626. The standard deviation is minimized for achieving maximum accuracy using a heuristic GA-ANN algorithm with a scanning distance of 152.4 mm, scanning angle of 61.8 degrees, and light intensity of 14 watts per square meter and same has been validated experimentally.