MbrlCatalogueTitleDetail

Do you wish to reserve the book?
HOW TO CREATE NEW SUBDUCTION ZONES
HOW TO CREATE NEW SUBDUCTION ZONES
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
HOW TO CREATE NEW SUBDUCTION ZONES
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
HOW TO CREATE NEW SUBDUCTION ZONES
HOW TO CREATE NEW SUBDUCTION ZONES

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
HOW TO CREATE NEW SUBDUCTION ZONES
HOW TO CREATE NEW SUBDUCTION ZONES
Journal Article

HOW TO CREATE NEW SUBDUCTION ZONES

2019
Request Book From Autostore and Choose the Collection Method
Overview
The association of deep-sea trenches—steeply angled, planar zones where earthquakes occur deep into Earth’s interior—and chains, or arcs, of active, explosive volcanoes had been recognized for 90 years prior to the development of plate tectonic theory in the 1960s. Oceanic lithosphere is created at mid-ocean ridge spreading centers and recycled into the mantle at subduction zones, where down-going lithospheric plates dynamically sustain the deep-sea trenches. Study of subduction zone initiation is a challenge because evidence of the processes involved is typically destroyed or buried by later tectonic and crust-forming events. In 2014 and 2017, the International Ocean Discovery Program (IODP) specifically targeted these processes with three back-to-back expeditions to the archetypal Izu-Bonin-Mariana (IBM) intra-oceanic arcs and one expedition to the Tonga-Kermadec (TK) system. Both subduction systems were initiated ~52 million years ago, coincident with a proposed major change of Pacific plate motion. These expeditions explored the tectonism preceding and accompanying subduction initiation and the characteristics of the earliest crust-forming magmatism. Lack of compressive uplift in the overriding plate combined with voluminous basaltic seafloor magmatism in an extensional environment indicates a large component of spontaneous subduction initiation was involved for the IBM. Conversely, a complex range of far-field uplift and depression accompanied the birth of the TK system, indicative of a more distal forcing of subduction initiation. Future scientific ocean drilling is needed to target the three-dimensional aspects of these processes at new converging margins.