MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Inertia–gravity waves in a liquid-filled, differentially heated, rotating annulus
Inertia–gravity waves in a liquid-filled, differentially heated, rotating annulus
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Inertia–gravity waves in a liquid-filled, differentially heated, rotating annulus
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Inertia–gravity waves in a liquid-filled, differentially heated, rotating annulus
Inertia–gravity waves in a liquid-filled, differentially heated, rotating annulus

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Inertia–gravity waves in a liquid-filled, differentially heated, rotating annulus
Inertia–gravity waves in a liquid-filled, differentially heated, rotating annulus
Journal Article

Inertia–gravity waves in a liquid-filled, differentially heated, rotating annulus

2015
Request Book From Autostore and Choose the Collection Method
Overview
Direct numerical simulations based on high-resolution pseudospectral methods are carried out for detailed investigation into the instabilities arising in a differentially heated, rotating annulus, the baroclinic cavity. Following previous works using air (Randriamampianina et al., J. Fluid Mech., vol. 561, 2006, pp. 359–389), a liquid defined by Prandtl number $Pr=16$ is considered in order to better understand, via the Prandtl number, the effects of fluid properties on the onset of gravity waves. The computations are particularly aimed at identifying and characterizing the spontaneously emitted small-scale fluctuations occurring simultaneously with the baroclinic waves. These features have been observed as soon as the baroclinic instability sets in. A three-term decomposition is introduced to isolate the fluctuation field from the large-scale baroclinic waves and the time-averaged mean flow. Even though these fluctuations are found to propagate as packets, they remain attached to the background baroclinic waves, locally triggering spatio-temporal chaos, a behaviour not observed with the air-filled cavity. The properties of these features are analysed and discussed in the context of linear theory. Based on the Richardson number criterion, the characteristics of the generation mechanism are consistent with a localized instability of the shear zonal flow, invoking resonant over-reflection.