MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Adaptive Observation Error Inflation for Assimilating All-Sky Satellite Radiance
Adaptive Observation Error Inflation for Assimilating All-Sky Satellite Radiance
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Adaptive Observation Error Inflation for Assimilating All-Sky Satellite Radiance
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Adaptive Observation Error Inflation for Assimilating All-Sky Satellite Radiance
Adaptive Observation Error Inflation for Assimilating All-Sky Satellite Radiance

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Adaptive Observation Error Inflation for Assimilating All-Sky Satellite Radiance
Adaptive Observation Error Inflation for Assimilating All-Sky Satellite Radiance
Journal Article

Adaptive Observation Error Inflation for Assimilating All-Sky Satellite Radiance

2017
Request Book From Autostore and Choose the Collection Method
Overview
An empirical flow-dependent adaptive observation error inflation (AOEI) method is proposed for assimilating all-sky satellite brightness temperatures through observing system simulation experiments with an ensemble Kalman filter. The AOEI method adaptively inflates the observation error when the absolute difference (innovation) between the observed and simulated brightness temperatures is greater than the square root of the combined variance of the uninflated observational error variance and ensemble-estimated background error variance. This adaptive method is designed to limit erroneous analysis increments where there are large representativeness errors, as is often the case for cloudy-affected radiances, even if the forecast model and the observation operator (the radiative transfer model) are perfect. The promising performance of this newly proposed AOEI method is demonstrated through observing system simulation experiments assimilating all-sky brightness temperatures from GOES-R (now GOES-16) in comparison with experiments using an alternative empirical observation error inflation method proposed by Geer and Bauer. It is found that both inflation methods perform similarly in the accuracy of the analysis and in the containment of potential representativeness errors; both outperform experiments using a constant observation error without inflation. Besides being easier to implement, the empirical AOEI method proposed here also shows some advantage over the Geer–Bauer method in better updating variables at large scales. Large representative errors are likely to be compounded by unavoidable uncertainties in the forecast system and/or nonlinear observation operator (as for the radiative transfer model), in particular in the areas of moist processes, as will be the case for real-data cloudy radiances, which will be further investigated in future studies.