MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Dynamics-based nonsingular interval model and luffing angular response field analysis of the DACS with narrowly bounded uncertainty
Dynamics-based nonsingular interval model and luffing angular response field analysis of the DACS with narrowly bounded uncertainty
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Dynamics-based nonsingular interval model and luffing angular response field analysis of the DACS with narrowly bounded uncertainty
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Dynamics-based nonsingular interval model and luffing angular response field analysis of the DACS with narrowly bounded uncertainty
Dynamics-based nonsingular interval model and luffing angular response field analysis of the DACS with narrowly bounded uncertainty

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Dynamics-based nonsingular interval model and luffing angular response field analysis of the DACS with narrowly bounded uncertainty
Dynamics-based nonsingular interval model and luffing angular response field analysis of the DACS with narrowly bounded uncertainty
Journal Article

Dynamics-based nonsingular interval model and luffing angular response field analysis of the DACS with narrowly bounded uncertainty

2017
Request Book From Autostore and Choose the Collection Method
Overview
This paper develops a dynamics-based nonsingular interval model and proposes a first-order composite function interval perturbation method (FCFIPM) for luffing angular response field analysis of the dual automobile cranes system (DACS) with narrowly bounded uncertainty. By using the nonsingular interval model to describe a structure parameter with bounded uncertainty, the reasonable lower and upper bounds can be obtained, which is quite different from the traditional interval model with approximate bounds only from a large number of samples. Firstly, for the DACS with deterministic information, the inverse kinematics is analyzed, and the dynamic model of the DACS is established based on the virtual work principle and the inverse kinematics. Secondly, considering the nonsingularity of the dynamic response curves, a dynamics-based nonsingular interval model is introduced. Based on the nonsingular interval model, the interval luffing angular response vector equilibrium equation of the DACS is established. Thirdly, a first-order composite function interval perturbation method is proposed. In the FCFIPM, the composite function vectors are expanded by using the first-order Taylor series expansion, based on the differential property of composite function and monotonic analysis technique, the lower and upper bounds of the interval luffing angular response vector of the crane 1 and crane 2 of the DACS are determined. The first case is to investigate the deterministic kinematics and dynamics of the DACS with a given trajectory. The second case is provided to illustrate the detailed implementation process of constructing a dynamics-based nonsingular interval model. Finally, some numerical examples are given to verify the feasibility and efficiency of the FCFIPM for solving the luffing angular response field problem with narrowly interval parameters.