MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Bounding duality gap for separable problems with linear constraints
Bounding duality gap for separable problems with linear constraints
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Bounding duality gap for separable problems with linear constraints
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Bounding duality gap for separable problems with linear constraints
Bounding duality gap for separable problems with linear constraints

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Bounding duality gap for separable problems with linear constraints
Bounding duality gap for separable problems with linear constraints
Journal Article

Bounding duality gap for separable problems with linear constraints

2016
Request Book From Autostore and Choose the Collection Method
Overview
We consider the problem of minimizing a sum of non-convex functions over a compact domain, subject to linear inequality and equality constraints. Approximate solutions can be found by solving a convexified version of the problem, in which each function in the objective is replaced by its convex envelope. We propose a randomized algorithm to solve the convexified problem which finds an ϵ -suboptimal solution to the original problem. With probability one, ϵ is bounded by a term proportional to the maximal number of active constraints in the problem. The bound does not depend on the number of variables in the problem or the number of terms in the objective. In contrast to previous related work, our proof is constructive, self-contained, and gives a bound that is tight.