MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Epigenetic inhibition of lysyl oxidase transcription after transformation by ras oncogene
Epigenetic inhibition of lysyl oxidase transcription after transformation by ras oncogene
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Epigenetic inhibition of lysyl oxidase transcription after transformation by ras oncogene
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Epigenetic inhibition of lysyl oxidase transcription after transformation by ras oncogene
Epigenetic inhibition of lysyl oxidase transcription after transformation by ras oncogene

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Epigenetic inhibition of lysyl oxidase transcription after transformation by ras oncogene
Epigenetic inhibition of lysyl oxidase transcription after transformation by ras oncogene
Journal Article

Epigenetic inhibition of lysyl oxidase transcription after transformation by ras oncogene

1999
Request Book From Autostore and Choose the Collection Method
Overview
Lysyl oxidase is an extracellular enzyme involved in connective tissue maturation that also acts as a phenotypic suppressor of the ras oncogene. To understand how this suppressor is controlled, gene transcription was studied and the promoter was characterized. Nuclear runoff transcription assays indicated that the markedly reduced amounts of lysyl oxidase message detected after ras transformation resulted from inhibition of lysyl oxidase transcription. Interferon-mediated phenotypic reversion of ras transformed cells, in which the ras oncogene continued to be expressed, was accompanied by the restoration of lysyl oxidase transcription. Reporter gene assay of a transfected mouse lysyl oxidase promoter indicated that it was active in the transformed background, despite the silencing of the endogenous lysyl oxidase promoter. The detection of comparable amounts of mRNA for transcription factors IRF-1 and IRF-2 in normal and ras-transformed cell lines suggests that the differential transcription of lysyl oxidase was not due to regulation of IRFs. Lysyl oxidase promoter activity was localized to a 126 bp region that includes two consensus TATA boxes with associated confirmed cap signals. Analysis of a human lysyl oxidase promoter sequence indicated similar promoter elements and extensive sequence identity with the mouse promoter. The binding of transcription factor AP2 to sites predicted in the control region was confirmed by DNase footprinting. Lysyl oxidase transcription was stimulated by dexamethasone treatment of cells, but this effect could not be assigned within the approximately 3 kb region tested in reporter gene constructs. The promoter activity of the lysyl oxidase reporter gene construct was completely abolished by in vitro DNA methylation, suggesting that the transcriptional suppression after transformation by the ras oncogene may involve DNA methylation.