Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
An effective control design approach based on novel enhanced aquila optimizer for automatic voltage regulator
in
Algorithms
/ Derivatives
/ Diversification
/ Heuristic methods
/ Machine learning
/ Novels
/ Robustness
/ Voltage regulators
2023
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
An effective control design approach based on novel enhanced aquila optimizer for automatic voltage regulator
in
Algorithms
/ Derivatives
/ Diversification
/ Heuristic methods
/ Machine learning
/ Novels
/ Robustness
/ Voltage regulators
2023
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
An effective control design approach based on novel enhanced aquila optimizer for automatic voltage regulator
Journal Article
An effective control design approach based on novel enhanced aquila optimizer for automatic voltage regulator
2023
Request Book From Autostore
and Choose the Collection Method
Overview
This paper presents a new metaheuristic algorithm by enhancing one of the recently proposed optimizers named Aquila optimizer (AO). The enhanced AO (enAO) algorithm is constructed by employing a novel modified opposition-based learning (OBL) mechanism and Nelder-Mead (NM) simplex search method. The novel modified OBL aids the AO in further diversification while the NM method increases the intensification. The enAO algorithm is first demonstrated to have more extraordinary ability than the original AO algorithm by employing challenging benchmark functions from the CEC 2019 test suite. The constructed enAO algorithm is proposed to design a PID plus second-order derivative (PIDD2) controller used in an automatic voltage regulator (AVR) system. To reach better efficiency, a novel objective function is also proposed in this paper. Initially, the proposed enAO-PIDD2 approach is demonstrated to be superior in terms of transient and frequency responses along with robustness and disturbance rejection compared to other available and best performing PID, fractional order PID (FOPID), PID acceleration (PIDA), and PIDD2 controllers tuned with different practical algorithms. Moreover, the superior performance of the proposed approach is also demonstrated comparatively using other available techniques for the AVR system reported in the last six years.
Publisher
Springer Nature B.V
Subject
This website uses cookies to ensure you get the best experience on our website.