MbrlCatalogueTitleDetail

Do you wish to reserve the book?
RAdam-DA-NLSTM: A Nested LSTM-Based Time Series Prediction Method for Human–Computer Intelligent Systems
RAdam-DA-NLSTM: A Nested LSTM-Based Time Series Prediction Method for Human–Computer Intelligent Systems
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
RAdam-DA-NLSTM: A Nested LSTM-Based Time Series Prediction Method for Human–Computer Intelligent Systems
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
RAdam-DA-NLSTM: A Nested LSTM-Based Time Series Prediction Method for Human–Computer Intelligent Systems
RAdam-DA-NLSTM: A Nested LSTM-Based Time Series Prediction Method for Human–Computer Intelligent Systems

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
RAdam-DA-NLSTM: A Nested LSTM-Based Time Series Prediction Method for Human–Computer Intelligent Systems
RAdam-DA-NLSTM: A Nested LSTM-Based Time Series Prediction Method for Human–Computer Intelligent Systems
Journal Article

RAdam-DA-NLSTM: A Nested LSTM-Based Time Series Prediction Method for Human–Computer Intelligent Systems

2023
Request Book From Autostore and Choose the Collection Method
Overview
At present, time series prediction methods are widely applied for Human–Computer Intelligent Systems in various fields such as Finance, Meteorology, and Medicine. To enhance the accuracy and stability of the prediction model, this paper proposes a time series prediction method called RAdam-Dual stage Attention mechanism-Nested Long Short-Term Memory (RAdam-DA-NLSTM). First, we design a Nested LSTM (NLSTM), which adopts a new internal LSTM unit structure as the memory cell of LSTM to guide memory forgetting and memory selection. Then, we design a self-encoder network based on the Dual stage Attention mechanism (DA-NLSTM), which uses the NLSTM encoder based on the input attention mechanism, and uses the NLSTM decoder based on the time attention mechanism. Additionally, we adopt the RAdam optimizer to solve the objective function, which dynamically selects Adam and SGD optimizers according to the variance dispersion and constructs the rectifier term to fully express the adaptive momentum. Finally, we use multiple datasets, such as PM2.5 data set, stock data set, traffic data set, and biological signals, to analyze and test this method, and the experimental results show that RAdam-DA-NLSTM has higher prediction accuracy and stability compared with other traditional methods.