MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Techno-Economic Design of Flue Gas Condensers for Medium-Scale Biomass Combustion Plants: Impact of Heat Demand and Return Temperature Variations
Techno-Economic Design of Flue Gas Condensers for Medium-Scale Biomass Combustion Plants: Impact of Heat Demand and Return Temperature Variations
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Techno-Economic Design of Flue Gas Condensers for Medium-Scale Biomass Combustion Plants: Impact of Heat Demand and Return Temperature Variations
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Techno-Economic Design of Flue Gas Condensers for Medium-Scale Biomass Combustion Plants: Impact of Heat Demand and Return Temperature Variations
Techno-Economic Design of Flue Gas Condensers for Medium-Scale Biomass Combustion Plants: Impact of Heat Demand and Return Temperature Variations

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Techno-Economic Design of Flue Gas Condensers for Medium-Scale Biomass Combustion Plants: Impact of Heat Demand and Return Temperature Variations
Techno-Economic Design of Flue Gas Condensers for Medium-Scale Biomass Combustion Plants: Impact of Heat Demand and Return Temperature Variations
Journal Article

Techno-Economic Design of Flue Gas Condensers for Medium-Scale Biomass Combustion Plants: Impact of Heat Demand and Return Temperature Variations

2019
Request Book From Autostore and Choose the Collection Method
Overview
Despite their obvious benefit in terms of energy efficiency and their potential benefit on pollutant emissions, Flue Gas Condensers (FGCs) are still not widely spread in biomass combustion plants. Although their costs have significantly decreased during the last decade, the economic viability of FGC retrofits is not straightforward and their return on investments is mainly dependent on the temperature of the available heat sink and the moisture content of the fuel. Based on a new techno-economic model of a FGC validated with recent industrial data, this paper presents a methodology to assess the economic viability of an FGC retrofitting in a medium-scale biomass combustion plant. The proposed methodology is applied to the case of a typical District Heating plant for which real data was collected. For the first time, the usual assumptions of constant process data generally used are challenged by considering the variability of the return temperature and heat demand over the year. Furthermore, a new concept of optimal configurations in terms of energy savings is introduced in this paper and compared to a strictly economic optimum. The economic feasibility is mainly evaluated by means of the Net Present Value (NPV), Discounted Payback Period (DPP), and the Modified Internal Rate of Return (MIRR). As expected, results show that the higher the humidity level and the lower the return temperature, the higher the economic profitability of a project. The NPV is, however, increased when considering variable inputs: Even with an average return temperature of 60 °C, a mixed operation of the FGC as a condenser and an economizer along the year is predicted, which results in an increased profitability assessment. Considering a constant return temperature over the year can lead to a 20% underestimation of the project NPV. An alternative averaging method is proposed, where two distinct temperature zones are considered: above and below the flue gas dew point. The discrepancy with a detailed temperature variation is reduced to a few percents. Our results also show that increasing the FGC surface beyond the highest NPV can lead to substantial energy savings at a reasonable cost, up to a certain level. The energetic optimum we defined can lead to an increase in energy savings by 17% for the same relative decrease of the NPV.