MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Performance Evaluation of LiBr-H2O and LiCl-H2O Working Pairs in Compression-Assisted Double-Effect Absorption Refrigeration Systems for Utilization of Low-Temperature Heat Sources
Performance Evaluation of LiBr-H2O and LiCl-H2O Working Pairs in Compression-Assisted Double-Effect Absorption Refrigeration Systems for Utilization of Low-Temperature Heat Sources
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Performance Evaluation of LiBr-H2O and LiCl-H2O Working Pairs in Compression-Assisted Double-Effect Absorption Refrigeration Systems for Utilization of Low-Temperature Heat Sources
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Performance Evaluation of LiBr-H2O and LiCl-H2O Working Pairs in Compression-Assisted Double-Effect Absorption Refrigeration Systems for Utilization of Low-Temperature Heat Sources
Performance Evaluation of LiBr-H2O and LiCl-H2O Working Pairs in Compression-Assisted Double-Effect Absorption Refrigeration Systems for Utilization of Low-Temperature Heat Sources

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Performance Evaluation of LiBr-H2O and LiCl-H2O Working Pairs in Compression-Assisted Double-Effect Absorption Refrigeration Systems for Utilization of Low-Temperature Heat Sources
Performance Evaluation of LiBr-H2O and LiCl-H2O Working Pairs in Compression-Assisted Double-Effect Absorption Refrigeration Systems for Utilization of Low-Temperature Heat Sources
Journal Article

Performance Evaluation of LiBr-H2O and LiCl-H2O Working Pairs in Compression-Assisted Double-Effect Absorption Refrigeration Systems for Utilization of Low-Temperature Heat Sources

2023
Request Book From Autostore and Choose the Collection Method
Overview
To improve the performance of conventional double-effect absorption refrigeration systems (DEARS), new series parallel (SP) and reverse parallel (RP) configurations using LiCl-H2O and LiBr-H2O as working fluids, combined with two vapor compressors (VC), are proposed and thermodynamically evaluated. The effects of the distribution ratio (D) and compression ratio (CR) on the system performance are discussed. The results reveal that both configurations can extend the operation ranges of DEARS effectively at a higher distribution ratio, and the performance for low-grade heat source utilization is improved substantially by the use of VC. The compressor positioned between the evaporator and absorber is superior to that between the high-pressure generator and low-pressure generator because of the better performance improvement and larger operating ranges. In all the examined cases, LiCl-H2O systems perform better than LiBr-H2O systems in terms of the coefficient of performance (COP) and exergetic efficiency. At the higher CR of approximately 2, the compression-assisted DEARS can be driven by heat sources below 100 °C with high levels of COPs above 1.16 for the LiBr-H2O working pair and 1.29 for the LiCl-H2O working pair. The system can operate at the optimum condition by adjusting the CR values according to the characteristics of the heat sources.

MBRLCatalogueRelatedBooks