MbrlCatalogueTitleDetail

Do you wish to reserve the book?
P-Band PolInSAR Sub-Canopy Terrain Retrieval in Tropical Forests Using Forest Height-to-Unpenetrated Depth Mapping
P-Band PolInSAR Sub-Canopy Terrain Retrieval in Tropical Forests Using Forest Height-to-Unpenetrated Depth Mapping
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
P-Band PolInSAR Sub-Canopy Terrain Retrieval in Tropical Forests Using Forest Height-to-Unpenetrated Depth Mapping
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
P-Band PolInSAR Sub-Canopy Terrain Retrieval in Tropical Forests Using Forest Height-to-Unpenetrated Depth Mapping
P-Band PolInSAR Sub-Canopy Terrain Retrieval in Tropical Forests Using Forest Height-to-Unpenetrated Depth Mapping

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
P-Band PolInSAR Sub-Canopy Terrain Retrieval in Tropical Forests Using Forest Height-to-Unpenetrated Depth Mapping
P-Band PolInSAR Sub-Canopy Terrain Retrieval in Tropical Forests Using Forest Height-to-Unpenetrated Depth Mapping
Journal Article

P-Band PolInSAR Sub-Canopy Terrain Retrieval in Tropical Forests Using Forest Height-to-Unpenetrated Depth Mapping

2025
Request Book From Autostore and Choose the Collection Method
Overview
For tropical forests characterized by tall and densely packed trees, even long-wavelength SAR signals may fail to achieve full penetration, posing a significant challenge for retrieving sub-canopy terrain using polarimetric interferometric SAR (InSAR)(PolInSAR) techniques. This paper proposes a single-baseline PolInSAR-based correction method for sub-canopy terrain estimation based on a one-dimensional lookup table (LUT) that links forest height to unpenetrated depth. The approach begins by applying an optimal normal matrix approximation to constrain the complex coherence measurements. Subsequently, the difference between the PolInSAR Digital Terrain Model (DTM) derived from the Random Volume over Ground (RVoG) model and the LiDAR DTM is defined as the unpenetrated depth. A nonlinear iterative optimization algorithm is then employed to estimate forest height, from which a fundamental mapping between forest height and unpenetrated depth is established. This mapping can be used to correct the bias in sub-canopy terrain estimation based on the PolInSAR RVoG model, even with only a small amount of sparse LiDAR DTM data. To validate the effectiveness of the method, experiments were conducted using fully polarimetric P-band airborne SAR data acquired by the European Space Agency (ESA) during the AfriSAR campaign over the Mabounie region in Gabon, Africa, in 2016. The experimental results demonstrate that the proposed method effectively mitigates terrain estimation errors caused by insufficient signal penetration or the limitation of single-interferometric geometry. Further analysis reveals that the availability of sufficient and precise forest height data significantly improves sub-canopy terrain accuracy. Compared with LiDAR-derived DTM, the proposed method achieves an average root mean square error (RMSE) of 5.90 m, representing an accuracy improvement of approximately 38.3% over traditional RVoG-derived InSAR DTM retrieval. These findings further confirm that there exist unpenetrated phenomena in single-baseline low-frequency PolInSAR-derived DTMs of tropical forested areas. Nevertheless, when sparse LiDAR topographic data is available, the integration of fully PolInSAR data with LUT-based compensation enables improved sub-canopy terrain retrieval. This provides a promising technical pathway with single-baseline configuration for spaceborne missions, such as ESA’s BIOMASS mission, to estimate sub-canopy terrain in tropical-rainforest regions.