MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Spatiotemporal and Synoptic Analysis of PM10 Based on Self-Organizing Map (SOM) During Asian Dust Events in South Korea
Spatiotemporal and Synoptic Analysis of PM10 Based on Self-Organizing Map (SOM) During Asian Dust Events in South Korea
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Spatiotemporal and Synoptic Analysis of PM10 Based on Self-Organizing Map (SOM) During Asian Dust Events in South Korea
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Spatiotemporal and Synoptic Analysis of PM10 Based on Self-Organizing Map (SOM) During Asian Dust Events in South Korea
Spatiotemporal and Synoptic Analysis of PM10 Based on Self-Organizing Map (SOM) During Asian Dust Events in South Korea

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Spatiotemporal and Synoptic Analysis of PM10 Based on Self-Organizing Map (SOM) During Asian Dust Events in South Korea
Spatiotemporal and Synoptic Analysis of PM10 Based on Self-Organizing Map (SOM) During Asian Dust Events in South Korea
Journal Article

Spatiotemporal and Synoptic Analysis of PM10 Based on Self-Organizing Map (SOM) During Asian Dust Events in South Korea

2025
Request Book From Autostore and Choose the Collection Method
Overview
This study analyzes the spatiotemporal characteristics of PM10 across 53 Asian dust events that affected the Korean Peninsula between January 2019 and June 2024. Self-Organizing Map (SOM) analysis was applied to sea level pressure and 850 hPa wind fields from the NCEP/DOE Reanalysis II dataset, classifying synoptic patterns into four distinct clusters. Cluster 1, associated with a deep low over Manchuria and strong westerly inflow, produced the highest PM10 concentrations and the longest durations across most regions, with sharp afternoon peaks and the highest skewness values, and was mainly sourced from the Gobi Desert. Cluster 2 featured a high–low pressure dipole, generating localized impacts in northwestern regions and shorter durations, with moderate afternoon increases, originating primarily from the Gobi Desert and Inner Mongolia. Cluster 3, linked to a low east of Japan, resulted in elevated PM10 mainly in central and southeastern regions, with peaks often occurring earlier in the day, and was associated with Manchurian dust sources. Cluster 4 exhibited a straight northwesterly flow with the high shifted eastward, producing moderate but spatially widespread concentrations and relatively consistent afternoon peaks, also linked to Manchurian sources. These results suggest that integrating synoptic pattern classification into dust forecasting can improve accuracy, enable early recognition of high-concentration events, and support the development of timely and region-specific warning strategies.