MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Artificial neural networks based predictions towards the auto-tuning and optimization of parallel IO bandwidth in HPC system
Artificial neural networks based predictions towards the auto-tuning and optimization of parallel IO bandwidth in HPC system
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Artificial neural networks based predictions towards the auto-tuning and optimization of parallel IO bandwidth in HPC system
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Artificial neural networks based predictions towards the auto-tuning and optimization of parallel IO bandwidth in HPC system
Artificial neural networks based predictions towards the auto-tuning and optimization of parallel IO bandwidth in HPC system

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Artificial neural networks based predictions towards the auto-tuning and optimization of parallel IO bandwidth in HPC system
Artificial neural networks based predictions towards the auto-tuning and optimization of parallel IO bandwidth in HPC system
Journal Article

Artificial neural networks based predictions towards the auto-tuning and optimization of parallel IO bandwidth in HPC system

2024
Request Book From Autostore and Choose the Collection Method
Overview
Super-computing or HPC clusters are built to provide services to execute computationally complex applications. Generally, these HPC applications involve large scale IO (input/output) processing over the networked parallel file system disks. They are commonly developed on top of the C/C++ based MPI standard library. The HPC clusters MPI–IO performance significantly depends on the particular parameter value configurations, not generally considered when writing the algorithms or programs. Therefore, this leads to poor IO and overall program performance degradation. The IO is mostly left to individual practitioners to be optimised at code level. This usually leads to unexpected consequences due to IO bandwidth degradation which becomes inevitable as the file data scales in size to petabytes. To overcome the poor IO performance, this research paper presents an approach for auto-tuning of the configuration parameters by forecasting the MPI–IO bandwidth via artificial neural networks (ANNs), a machine learning (ML) technique. These parameters are related to MPI–IO library and lustre (parallel) file system. In addition to this, we have identified a number of common configurations out of numerous possibilities, selected in the auto-tuning process of READ/WRITE operations. These configurations caused an overall READ bandwidth improvement of 65.7% with almost 83% test cases improved. In addition, the overall WRITE bandwidth improved by 83% with number of test cases improved by almost 93%. This paper demonstrates that by using auto-tuning parameters via ANNs predictions, this can significantly impact overall IO bandwidth performance.