MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Thermal Performance Analysis of Gradient Porosity Aluminium Foam Heat Sink for Air-Cooling Battery Thermal Management System
Thermal Performance Analysis of Gradient Porosity Aluminium Foam Heat Sink for Air-Cooling Battery Thermal Management System
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Thermal Performance Analysis of Gradient Porosity Aluminium Foam Heat Sink for Air-Cooling Battery Thermal Management System
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Thermal Performance Analysis of Gradient Porosity Aluminium Foam Heat Sink for Air-Cooling Battery Thermal Management System
Thermal Performance Analysis of Gradient Porosity Aluminium Foam Heat Sink for Air-Cooling Battery Thermal Management System

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Thermal Performance Analysis of Gradient Porosity Aluminium Foam Heat Sink for Air-Cooling Battery Thermal Management System
Thermal Performance Analysis of Gradient Porosity Aluminium Foam Heat Sink for Air-Cooling Battery Thermal Management System
Journal Article

Thermal Performance Analysis of Gradient Porosity Aluminium Foam Heat Sink for Air-Cooling Battery Thermal Management System

2022
Request Book From Autostore and Choose the Collection Method
Overview
The three dimensional thermal model of a forced air-cooling battery thermal management system (BTMS) using aluminium foam heat sink (AFHS) is established, and the effects of porosity, pore density, and mass flow rate on the thermal and flow performance are discussed numerically from the aspects of pressure drop and temperature control effectiveness. The results reveal that an AFHS can markedly reduce the battery temperature compared with the BTMS without AFHS, but it also causes huge pressure loss and increases the temperature difference between the upstream and downstream of the battery. Reducing the porosity of aluminium foam reduces the battery’s average temperature, but increases the temperature difference. The increase of pore density leads to the increase of pressure drop, but has little effect on the battery temperature. Based on this, a study of the gradient porosity of the AFHS is carried out, and the thermal and flow performance are compared with the homogeneous AFHS. The results show that the AFHS with porosity-increasing gradient pattern (PIGP) in the direction perpendicular to flow reduces the pressure loss and improves flow performance. The AFHS with a porosity-decreasing gradient pattern (PDGP) in the flow direction has no obvious effect on the flow characteristics, but it can reduce the temperature difference of the battery. The direction of gradient porosity can be selected according to need. In addition, due to the energy absorption characteristics of aluminium foam, AFHS can improve the crashworthiness of the battery pack. Therefore, AFHS has great potential in air-cooled BTM.